MedianAbsoluteError#
from tmlt.tune import MedianAbsoluteError
- class tmlt.tune.MedianAbsoluteError(measure_column, join_columns, grouping_columns=None, *, name=None, description=None, baseline=None, output=None)#
Bases:
QuantileAbsoluteError
Computes the median absolute error.
Equivalent to
QuantileAbsoluteError
withquantile = 0.5
.Example
>>> dp_outputs = {"O": dp_df} >>> baseline_df = spark.createDataFrame( ... pd.DataFrame( ... { ... "A": ["a1", "a2", "a3"], ... "X": [100, 100, 100] ... } ... ) ... ) >>> baseline_outputs = {"default": {"O": baseline_df}}
>>> metric = MedianAbsoluteError( ... measure_column="X", ... join_columns=["A"] ... ) >>> metric.quantile 0.5 >>> metric.join_columns ['A'] >>> result = metric(dp_outputs, baseline_outputs).value >>> result 10