tuner#
Interface for tuning SessionPrograms.
Warning
SessionProgramTuner is intended to be used for tuning DP programs. It does not provide any privacy guarantees. It is recommended to use synthetic or historical data for tuning instead of the data that will be used in production.
The SessionProgramTuner
class is an abstract base class that
defines the interface for tuning SessionProgram
s. To tune a specific
program, users should subclass SessionProgramTuner
, passing their
SessionProgram
as the program
class argument.
>>> class Program(SessionProgram):
... class ProtectedInputs:
... protected_df: DataFrame
... class Outputs:
... a_sum: DataFrame
... class Parameters:
... low: int
... high: int
... def session_interaction(self, session: Session):
... low = self.parameters["low"]
... high = self.parameters["high"]
... sum_query = QueryBuilder("protected_df").sum("a", low, high)
... a_sum = session.evaluate(sum_query, self.privacy_budget)
... return {"a_sum": a_sum}
>>> class Tuner(SessionProgramTuner, program=Program):
... baseline_options = {
... "use_clamping_bounds": NoPrivacySession.Options(
... enforce_clamping_bounds=True
... ),
... "ignore_clamping_bounds": NoPrivacySession.Options(
... enforce_clamping_bounds=False
... ),
... }
...
... @baseline("custom_baseline")
... def no_clamping_bounds_baseline(protected_inputs: Dict[str, DataFrame]) -> Dict[str, DataFrame]:
... df = protected_inputs["protected_df"]
... sum_value = df.agg(sf_sum("a").alias('a_sum'))
... return {"a_sum": sum_value}
...
... @metric(name="root_mean_squared_error", output="a_sum")
... def compute_rmse(
... dp_outputs: DataFrame, baseline_outputs: DataFrame
... ):
... total_sum_dp = dp_outputs.select("a_sum").collect()[0]["a_sum"]
... total_sum_baseline = (
... baseline_outputs.select("a_sum").collect()[0]["a_sum"]
... )
... squared_error = (total_sum_dp - total_sum_baseline) ** 2
... return math.sqrt(squared_error)
...
... metrics = [
... RelativeError(
... "a_sum",
... column="a_sum",
... baselines=list(baseline_options.keys()) + ["custom_baseline"],
... ),
... ] # This is required to use the built-in metrics
Just like a SessionProgram
, once a subclass of
SessionProgramTuner
is defined, it can be instantiated using the
automatically-generated builder for that class. Unlike a SessionProgram
,
you can pass Tunable
objects to the builder methods instead of
concrete values.
>>> protected_df = spark.createDataFrame([(1, 2), (3, 4)], ["a", "b"])
>>> tuner = (
... Tuner.Builder()
... .with_privacy_budget(Tunable("budget"))
... .with_private_dataframe("protected_df", protected_df, AddOneRow())
... .with_parameter("low", 0)
... .with_parameter("high", Tunable("high"))
... .build()
... )
The outputs()
method can be used to run the program
to get the outputs of the DP and baseline programs.
>>> dp_outputs, baseline_outputs = (
... tuner.outputs({"budget": PureDPBudget(1), "high": 1})
... )
The error_report()
method on the tuner can be used to
run the program to get the DP and baseline outputs as well as the metrics defined in
the Tuner class.
>>> tuner.error_report({"budget": PureDPBudget(1), "high": 1}).show()
Error report ran with budget PureDPBudget(epsilon=1) and the following tunable parameters:
budget: PureDPBudget(epsilon=1)
high: 1
and the following additional parameters:
low: 0
Metric results:
+---------+-----------------------------+------------------------+------------------------------------------------+
| Value | Metric | Baseline | Description |
+=========+=============================+========================+================================================+
| 1.5 | a_sum.relative_error(a_sum) | use_clamping_bounds | Relative error for column a_sum of table a_sum |
+---------+-----------------------------+------------------------+------------------------------------------------+
| 1.25 | a_sum.relative_error(a_sum) | ignore_clamping_bounds | Relative error for column a_sum of table a_sum |
+---------+-----------------------------+------------------------+------------------------------------------------+
| 1.25 | a_sum.relative_error(a_sum) | custom_baseline | Relative error for column a_sum of table a_sum |
+---------+-----------------------------+------------------------+------------------------------------------------+
| 3 | root_mean_squared_error | use_clamping_bounds | User-defined metric (no description) |
+---------+-----------------------------+------------------------+------------------------------------------------+
| 5 | root_mean_squared_error | ignore_clamping_bounds | User-defined metric (no description) |
+---------+-----------------------------+------------------------+------------------------------------------------+
| 5 | root_mean_squared_error | custom_baseline | User-defined metric (no description) |
+---------+-----------------------------+------------------------+------------------------------------------------+
Functions#
Decorator to define a custom baseline method for |
|
Decorator to define a custom metric method for |
|
Views of the output table to be used across metrics in place of program outputs. |
- baseline(name)#
Decorator to define a custom baseline method for
SessionProgramTuner
.To use the “default” baseline in addition to this custom baseline, you need to separately specify “default”: NoPrivacySession.Options() in
baseline_options
class variable.- Parameters
name (str) – A name for the custom baseline.
>>> from tmlt.analytics.session import Session
>>> class Program(SessionProgram): ... class ProtectedInputs: ... protected_df: DataFrame ... class UnprotectedInputs: ... unprotected_df: DataFrame ... class Outputs: ... output_df: DataFrame ... def session_interaction(self, session: Session): ... ... >>> class Tuner(SessionProgramTuner, program=Program): ... @baseline("custom_baseline") ... def custom_baseline( ... protected_inputs: Dict[str, DataFrame], ... ) -> Dict[str, DataFrame]: ... ... ... @baseline("another_custom_baseline") ... def another_custom_baseline( ... self, ... protected_inputs: Dict[str, DataFrame], ... unprotected_inputs: Dict[str, DataFrame], ... ) -> Dict[str, DataFrame]: ... # If the program has unprotected inputs or parameters, the custom ... # baseline method can take them as an argument. ... ... ... baseline_options = { ... "default": NoPrivacySession.Options() ... } # This is required to keep the default baseline
- metric(name, output, description=None, baselines=None)#
Decorator to define a custom metric method for
SessionProgram
.Alternatively, you can use
CustomSingleOutputMetric
directly.To use the built-in metrics in addition to this custom metric, you can separately specify
metrics
class variable.- Parameters
name (str) – A name for the metric.
description (Optional[str]) – A description of the metric.
output (str) – The output to compute the metric for.
baselines (Optional[Union[str, List[str]]]) – The name of the baseline program(s) used for the error report. If None, use all baselines specified as custom baseline and baseline options on tuner class. If no baselines are specified on tuner class, use default baseline. If a string, use only that baseline. If a list, use only those baselines.
>>> from tmlt.analytics.session import Session >>> from tmlt.analytics.metrics import AbsoluteError
>>> class Program(SessionProgram): ... class ProtectedInputs: ... protected_df: DataFrame ... class UnprotectedInputs: ... unprotected_df: DataFrame ... class Outputs: ... output_df: DataFrame ... def session_interaction(self, session: Session): ... return {"output_df": dp_output} >>> class Tuner(SessionProgramTuner, program=Program): ... @metric(name="custom_metric", output="output_df") ... def custom_metric( ... dp_outputs: DataFrame, baseline_outputs: DataFrame ... ): ... # If the program has unprotected inputs and/or parameters, the custom ... # metric method can take them as an argument. ... ... ... metrics = [ ... AbsoluteError(output="output_df", column="Y"), ... ] # This is required to use the built-in metrics
- view(name)#
Views of the output table to be used across metrics in place of program outputs.
- Parameters
name (str) – A name for the output view.
>>> from tmlt.analytics.session import Session >>> from tmlt.analytics.metrics import RelativeError
>>> class Program(SessionProgram): ... class ProtectedInputs: ... protected_df: DataFrame ... class UnprotectedInputs: ... unprotected_df: DataFrame ... class Outputs: ... output_df: DataFrame ... def session_interaction(self, session: Session): ... ... >>> class Tuner(SessionProgramTuner, program=Program): ... @view("output_view") ... def custom_view1( ... outputs: Dict[str, DataFrame], ... ) -> DataFrame: ... ... ... @view("another_output_view") ... def custom_view2( ... self, ... outputs: Dict[str, DataFrame], ... unprotected_inputs: Dict[str, DataFrame], ... ) -> DataFrame: ... # If the program has unprotected inputs or parameters, the view method ... # can take them as an argument. ... ... ... metrics = [ ... RelativeError("output_view", column="a_sum"), ... ] # The view can be used instead of output when metric is defined
Classes#
Base class for defining an object to tune inputs to a |
|
Named placeholder for a single input to a |
|
Output of a single error report run. |
|
Output of an error report run across multiple input combinations. |
|
An unprotected input that was used for an |
|
A protected input that was used for an |
- class SessionProgramTuner(builder)#
Base class for defining an object to tune inputs to a
SessionProgram
.Note
This is only available on a paid version of Tumult Analytics. If you would like to hear more, please contact us at info@tmlt.io.
SessionProgramTuners should not be directly constructed. Instead, users should create a subclass of
SessionProgramTuner
, then construct theirSessionProgramTuner
using the auto-generatedBuilder
attribute of the subclass.- Parameters
builder (SessionProgramTuner) –
- class Builder#
The builder for a specific subclass of SessionProgramTuner.
- with_private_dataframe(source_id, dataframe, protected_change)#
Add a tunable private dataframe to the builder.
- Parameters
source_id (str) –
dataframe (Union[pyspark.sql.DataFrame, Tunable]) –
protected_change (Union[tmlt.analytics.protected_change.ProtectedChange, Tunable]) –
- Return type
- with_public_dataframe(source_id, dataframe)#
Add a tunable public dataframe to the builder.
- Parameters
source_id (str) –
dataframe (Union[pyspark.sql.DataFrame, Tunable]) –
- Return type
- build()#
Returns an instance of the matching
SessionProgramTuner
subtype.- Return type
- with_id_space(id_space)#
Adds an identifier space.
This defines a space of identifiers that map 1-to-1 to the identifiers being protected by a table with the
AddRowsWithID
protected change. Any table with such a protected change must be a member of some identifier space.- Parameters
id_space (str) –
- with_privacy_budget(privacy_budget)#
Set the privacy budget for the object being built.
- Parameters
privacy_budget (Union[tmlt.analytics.privacy_budget.PrivacyBudget, Tunable]) –
- baseline_options :Optional[Union[Dict[str, tmlt.analytics.no_privacy_session.NoPrivacySession.Options], tmlt.analytics.no_privacy_session.NoPrivacySession.Options]]#
Configuration for how baseline outputs are computed.
By default, a SessionProgramTuner computes both the DP outputs and the baseline outputs for a SessionProgram to compute metrics. The baseline outputs are computed by calling the
session_interaction()
method with aNoPrivacySession
. Thebaseline_options
attribute allows you to override the default options for theNoPrivacySession
used to compute the baseline. You can also specify multiple configurations to compute the baselines with different options. When multiple baseline configurations are specified, the metrics are computed with respect to each of the baseline configurations (unless specified otherwise in the metric definitions).To override the default baseline options (see
Options
), you can set this to anOptions
object.If you want to specify multiple baseline configurations, you can set this to a dictionary mapping baseline names to
Options
.
- metrics :Optional[List[tmlt.analytics.metrics.Metric]]#
A list of metrics to compute in each
error_report
.
- program :Type[tmlt.analytics.program.SessionProgram]#
A subclass of
SessionProgram
to be tuned.
- __init__(builder)#
Constructor.
Warning
This constructor is not intended to be used directly. Use the automatically generated builder instead. It can be accessed using the
Builder
attribute of the subclass.- Parameters
builder (tmlt.analytics.tuner._tuner.SessionProgramTuner.Builder) –
- property tunables#
Returns a list of tunable inputs associated with this tuner.
- Return type
List[Tunable]
- outputs(tunable_values=None)#
Computes all outputs for a single run.
- Parameters
tunable_values (Optional[Dict[str, Any]]) – A dictionary mapping names of
Tunable
s to concrete values to use for this run. EveryTunable
used in building this tuner must have a value in this dictionary. This can be None only if noTunable
s were used.- Return type
Tuple[Dict[str, pyspark.sql.DataFrame], Dict[str, Dict[str, pyspark.sql.DataFrame]]]
- error_report(tunable_values=None)#
Computes DP outputs, baseline outputs, and metrics for a single run.
- class Tunable#
Named placeholder for a single input to a
Builder
.Note
This is only available on a paid version of Tumult Analytics. If you would like to hear more, please contact us at info@tmlt.io.
When a
Tunable
is passed to aBuilder
, it is replaced with the concrete values for the tunable parameter when buildingSessionProgram
s inside of methods likeerror_report()
andmulti_error_report()
.- name :str#
Name of the tunable parameter.
- class ErrorReport#
Output of a single error report run.
Note
This is only available on a paid version of Tumult Analytics. If you would like to hear more, please contact us at info@tmlt.io.
This class is not intended to be constructed directly. Instead, it is returned by the
error_report()
method.- tunable_values :Dict[str, Any]#
The values of the tunable parameters used for this error report.
- parameters :Dict[str, Any]#
The non-tunable parameters used for this error report.
- protected_inputs :Dict[str, ProtectedInput]#
The protected inputs used for this error report.
- unprotected_inputs :Dict[str, UnprotectedInput]#
The unprotected inputs used for this error report.
- privacy_budget :tmlt.analytics.privacy_budget.PrivacyBudget#
The privacy budget used for this error report.
- dp_outputs :Dict[str, pyspark.sql.DataFrame]#
The differentially private outputs of the program.
- baseline_outputs :Dict[str, Dict[str, pyspark.sql.DataFrame]]#
The outputs of the baseline program.
- metrics :List[tmlt.analytics.metrics._base.MetricOutput]#
The metrics computed on the outputs of the dp and baseline programs.
- format()#
Return a string representation of this object.
- show()#
Prints the error report in a nicely-formatted, human-readable way.
- class MultiErrorReport(reports)#
Output of an error report run across multiple input combinations.
Note
This is only available on a paid version of Tumult Analytics. If you would like to hear more, please contact us at info@tmlt.io.
This class is not intended to be constructed directly. Instead, it is returned by the
multi_error_report()
method.- Parameters
reports (List[ErrorReport]) –
- __init__(reports)#
Constructor.
Warning
This class is not intended to be constructed directly. Instead, it is returned by the
multi_error_report()
method.- Parameters
reports (
List
[ErrorReport
]List
[ErrorReport
]) – An error report for each run.
- property reports#
Return the error reports.
- Return type
List[ErrorReport]
- __iter__()#
Return an iterator over the error reports.
- Return type
Iterator[ErrorReport]
- to_dataframe()#
Return a dataframe representation of the error reports.
The dataframe will have a row for each error report (run) and a column for each tunable and metric.
- Return type
- class UnprotectedInput#
Bases:
NamedTuple
An unprotected input that was used for an
ErrorReport
.- name :str#
The name of the input.
- dataframe :pyspark.sql.DataFrame#
A dataframe containing the unprotected data used for the report.
- class ProtectedInput#
Bases:
NamedTuple
A protected input that was used for an
ErrorReport
.Warning
Note that normally ProtectedInputs are treated as sensitive and would not accessible to the user except through the
Session
API to avoid violating differential privacy. But these error reports are not differentially private, and for this reason it is highly recommended to avoid using sensitive data in error reports, and to instead use synthetic data or other non-sensitive data.For these reasons, the protected inputs used in error reports are attached to the outputs for your convenience, but it is ultimately your responsibility to ensure that truly sensitive data is not used inappropriately.
- name :str#
The name of the input.
- dataframe :pyspark.sql.DataFrame#
A dataframe containing the protected data used for the report.
- protected_change :tmlt.analytics.protected_change.ProtectedChange#
What changes to the protected data the Session should protect.