metrics#

This is only applicable to Analytics Pro. Metrics to measure the quality of program outputs.

Metrics are to be used in the context of program evaluation and error reporting, where the goal is to compare the outputs of a program to a set of expected outputs to determine the error. They are designed to be flexible and extensible, allowing users to combine them in various ways and define their own metrics.

A number of pre-built metrics are provided, for example QuantileAbsoluteError, HighRelativeErrorFraction, and SpuriousRate. Users can also define their own custom metrics using CustomSingleOutputMetric or CustomMultiBaselineMetric.

Suppose we have a SessionProgram that has one protected input and produces one output that is a count of the number of rows in the protected input.

>>> class MinimalProgram(SessionProgram):
...     class ProtectedInputs:
...         protected_df: DataFrame  # DataFrame type annotation is required
...     class Outputs:
...         total_count: DataFrame  # required here too
...     def session_interaction(self, session: Session):
...         count_query = QueryBuilder("protected_df").count()
...         budget = self.privacy_budget  #  session.remaining_privacy_budget also works
...         total_count = session.evaluate(count_query, budget)
...         return {"total_count": total_count}

We can pass this information to the SessionProgramTuner class, which is what gives us access to error reports.

We can measure the error of the program by comparing the program output to the expected output. Suppose we want to use a built-in metric: the absolute error AbsoluteError and a custom metric: root mean squared error. We need to instantiate the metrics and include them in the list of metric associated with the metrics class variable.

>>> protected_df = spark.createDataFrame(pd.DataFrame({"a": [1] * 25}))
>>> def compute_rmse(
...    dp_outputs: DataFrame, baseline_outputs: DataFrame
... ):
...    total_count_dp = dp_outputs.select("count").collect()[0]["count"]
...    total_count_baseline = (
...        baseline_outputs.select("count").collect()[0]["count"]
...    )
...    squared_error = (total_count_dp - total_count_baseline) ** 2
...    return math.sqrt(squared_error)
>>> class Tuner(SessionProgramTuner, program=MinimalProgram):
...    metrics = [
...         AbsoluteError(output="total_count", column="count"),
...         CustomSingleOutputMetric(
...                 func=compute_rmse,
...                 name="root_mean_squared_error",
...                 description="Root mean squared error",
...                 output="total_count",
...         ),
...    ]
>>> tuner = (
...    Tuner.Builder()
...    .with_privacy_budget(PureDPBudget(epsilon=1))
...    .with_private_dataframe("protected_df", protected_df, AddOneRow())
...    .build()
... )

Now that our SessionProgramTuner is initialized, we can get our very first error report by calling the error_report() method.

>>> error_report = tuner.error_report()
>>> error_report.dp_outputs["total_count"].show()  
+-----+
|count|
+-----+
|   25|
+-----+
>>> error_report.baseline_outputs["default"]["total_count"].show()  
+-----+
|count|
+-----+
|   23|
+-----+
>>> error_report.show()  
Error report ran with budget PureDPBudget(epsilon=1) and no tunable parameters and no additional parameters

Metric results:
+---------+-------------------------+------------+------------------------------------------------------+
|   Value | Metric                  | Baseline   | Description                                          |
+=========+=========================+============+======================================================+
|       2 | abs_err                 | default    | Absolute error for column count of table total_count |
+---------+-------------------------+------------+------------------------------------------------------+
|       2 | root_mean_squared_error | default    | Root mean squared error                              |
+---------+-------------------------+------------+------------------------------------------------------+

See the tutorials starting at Basics of error measurement for more examples on how to take advantage of metrics and related classes.

Classes#

AbsoluteError

Computes the absolute error between two scalar values.

QuantileAbsoluteError

Computes the quantile of the empirical absolute error.

MedianAbsoluteError

Computes the median absolute error.

RelativeError

Computes the relative error between two scalar values.

QuantileRelativeError

Computes the quantile of the empirical relative error.

MedianRelativeError

Computes the median relative error.

HighRelativeErrorFraction

Computes the fraction of groups with relative error above a threshold.

SpuriousRate

Computes the fraction of groups in the DP output but not in the baseline output.

SuppressionRate

Computes the fraction of groups in the baseline output but not in the DP output.

CustomSingleOutputMetric

Wrapper to allow users to define a metric that operates on a single output table.

CustomMultiBaselineMetric

Wrapper to turn a function into a metric using DP and single baseline’s output.

Metric

A generic metric.

MetricOutput

An output of a Metric with additional metadata.

class AbsoluteError(output, column=None, *, name=None, description=None, baselines=None)#

Bases: tmlt.analytics.metrics._base.ScalarMetric

Computes the absolute error between two scalar values.

Note

This is only available on a paid version of Tumult Analytics. If you would like to hear more, please contact us at info@tmlt.io.

How it works:

  1. The algorithm takes as input two single-row tables: one representing the differentially private (DP) output and the other representing the baseline output.

    DP Table (dp): This table contains the output data generated by a differentially private mechanism.

    Baseline Table (baseline): This table contains the output data generated by a non-private or baseline mechanism. It serves as a reference point for comparison with the DP output.

    The scalar values are retrieved from these single-row dataframes. Both values are expected to be numeric (either integers or floats). If not, the algorithm raises a ValueError.

  2. The algorithm computes the absolute error. Absolute error is calculated as the absolute difference between the DP and baseline values using the formula \(abs(dp - baseline)\).

Example

>>> dp_df = spark.createDataFrame(pd.DataFrame({"X": [5]}))
>>> dp_outputs = {"O": dp_df}
>>> baseline_df = spark.createDataFrame(pd.DataFrame({"X": [6]}))
>>> baseline_outputs = {"O": baseline_df}
>>> metric = AbsoluteError(output="O")
>>> result = metric.compute_for_baseline(dp_outputs, baseline_outputs)
>>> result
1
>>> metric.format(result)
'1'
Parameters
  • output (str) –

  • column (Optional[str]) –

  • name (Optional[str]) –

  • description (Optional[str]) –

  • baselines (Optional[List[str]]) –

__init__(output, column=None, *, name=None, description=None, baselines=None)#

Constructor.

Parameters
  • output (strstr) – The output to compute the metric for.

  • column (str | NoneOptional[str] (default: None)) – The column to compute the absolute error over. If the given output has only one column, this argument may be omitted.

  • name (str | NoneOptional[str] (default: None)) – A name for the metric.

  • description (str | NoneOptional[str] (default: None)) – A description of the metric.

  • baselines (List[str] | NoneOptional[List[str]] (default: None)) – The name of the baseline program(s) used for the error report. If None, use all baselines specified as custom baseline and baseline options on tuner class. If no baselines are specified on tuner class, use default baseline. If a string, use only that baseline. If a list, use only those baselines.

format(value)#

Returns a string representation of this object.

compute_on_scalar(dp_value, baseline_value)#

Computes metric value from DP and baseline values.

property output#

Returns the name of the run output or view name.

Return type

str

property column#

Returns the name of the value column, if it is set.

Return type

Optional[str]

compute_for_baseline(dp_outputs, baseline_outputs, unprotected_inputs=None, program_parameters=None)#

Returns the metric value given the DP outputs and the baseline outputs.

Parameters
Return type

Any

property name#

Returns the name of the metric.

Return type

str

property description#

Returns the description of the metric.

Return type

str

property baselines#

Returns the baselines used for the metric.

Return type

Optional[Union[str, List[str]]]

__call__(dp_outputs, baseline_outputs, unprotected_inputs=None, program_parameters=None)#

Computes the given metric on the given DP and baseline outputs.

Parameters
  • dp_outputs (Dict[str, pyspark.sql.DataFrame]) – The differentially private outputs of the program.

  • baseline_outputs (Dict[str, Dict[str, pyspark.sql.DataFrame]]) – The outputs of the baseline programs.

  • unprotected_inputs (Optional[Dict[str, pyspark.sql.DataFrame]]) – Optional public dataframes used in error computation.

  • program_parameters (Optional[Dict[str, Any]]) – Optional program specific parameters used in error computation.

Return type

List[tmlt.analytics.metrics.MetricOutput]

class QuantileAbsoluteError(output, quantile, measure_column, join_columns, *, name=None, description=None, baselines=None)#

Bases: tmlt.analytics.metrics._base.JoinedOutputMetric

Computes the quantile of the empirical absolute error.

Note

This is only available on a paid version of Tumult Analytics. If you would like to hear more, please contact us at info@tmlt.io.

How it works:

  1. The algorithm takes as input two tables: one representing the differentially private (DP) output and the other representing the baseline output.

    DP Table (dp): This table contains the output data generated by a differentially private mechanism.

    Baseline Table (baseline): This table contains the output data generated by a non-private or baseline mechanism. It serves as a reference point for comparison with the DP output.

    The algorithm includes error handling to ensure the validity of the input data. It checks for the existence and numeric type of the measure_column.

    The algorithm performs an inner join between the DP and baseline tables based on join_columns. This join must be one-to-one, with each row in the DP table matching exactly one row in the baseline table, and vice versa. This ensures that there is a direct correspondence between the DP and baseline outputs for each entity, allowing for accurate comparison.

  2. After performing the join, the algorithm computes the absolute error for each group. Absolute error is calculated as the absolute difference between the corresponding values in the DP and baseline outputs using the formula \(abs(dp - baseline)\).

  3. The algorithm then calculates the n-th quantile of the absolute error across all groups.

    The algorithm handles cases where the quantile computation may result in an empty column, returning a NaN (not a number) value in such scenarios.

    Note

    • Provided algorithm assumes a one-to-one join scenario.

    • Nulls in the measure columns are dropped because the metric cannot handle null values, and the absolute error computation requires valid numeric values in both columns.

Example

>>> dp_df = spark.createDataFrame(
...     pd.DataFrame(
...         {
...             "A": ["a1", "a2", "a3"],
...             "X": [50, 110, 100]
...         }
...     )
... )
>>> dp_outputs = {"O": dp_df}
>>> baseline_df = spark.createDataFrame(
...     pd.DataFrame(
...         {
...             "A": ["a1", "a2", "a3"],
...             "X": [100, 100, 100]
...         }
...     )
... )
>>> baseline_outputs = {"O": baseline_df}
>>> metric = QuantileAbsoluteError(
...     output="O",
...     quantile=0.5,
...     measure_column="X",
...     join_columns=["A"]
... )
>>> metric.quantile
0.5
>>> metric.join_columns
['A']
>>> result = metric.compute_for_baseline(dp_outputs, baseline_outputs)
>>> result
10.0
>>> metric.format(result)
'10.0'
Methods#

quantile()

Returns the quantile.

measure_column()

Returns name of the column to compute the quantile of absolute error over.

format()

Returns a string representation of this object.

compute_on_joined_output()

Computes quantile absolute error value from combined dataframe.

output()

Returns the name of the run output or view name.

join_columns()

Returns the name of the join columns.

check_join_key_uniqueness()

Check if the join keys uniquely identify rows in the joined DataFrame.

compute_for_baseline()

Computes metric value.

name()

Returns the name of the metric.

description()

Returns the description of the metric.

baselines()

Returns the baselines used for the metric.

__call__()

Computes the given metric on the given DP and baseline outputs.

Parameters
  • output (str) –

  • quantile (float) –

  • measure_column (str) –

  • join_columns (List[str]) –

  • name (Optional[str]) –

  • description (Optional[str]) –

  • baselines (Optional[List[str]]) –

__init__(output, quantile, measure_column, join_columns, *, name=None, description=None, baselines=None)#

Constructor.

Parameters
  • output (strstr) – The output to compute the metric for.

  • measure_column (strstr) – The column to compute the quantile of absolute error over.

  • quantile (floatfloat) – The quantile to calculate (between 0 and 1).

  • join_columns (List[str]List[str]) – Columns to join on.

  • name (str | NoneOptional[str] (default: None)) – A name for the metric.

  • description (str | NoneOptional[str] (default: None)) – A description of the metric.

  • baselines (List[str] | NoneOptional[List[str]] (default: None)) – The name of the baseline program(s) used for the error report. If None, use all baselines specified as custom baseline and baseline options on tuner class. If no baselines are specified on tuner class, use default baseline. If a string, use only that baseline. If a list, use only those baselines.

property quantile#

Returns the quantile.

Return type

float

property measure_column#

Returns name of the column to compute the quantile of absolute error over.

Return type

str

format(value)#

Returns a string representation of this object.

compute_on_joined_output(joined_output)#

Computes quantile absolute error value from combined dataframe.

Parameters

joined_output (pyspark.sql.DataFrame) –

property output#

Returns the name of the run output or view name.

Return type

str

property join_columns#

Returns the name of the join columns.

Return type

List[str]

check_join_key_uniqueness(joined_output)#

Check if the join keys uniquely identify rows in the joined DataFrame.

Parameters

joined_output (pyspark.sql.DataFrame) –

compute_for_baseline(dp_outputs, baseline_outputs, unprotected_inputs=None, program_parameters=None)#

Computes metric value.

Parameters
property name#

Returns the name of the metric.

Return type

str

property description#

Returns the description of the metric.

Return type

str

property baselines#

Returns the baselines used for the metric.

Return type

Optional[Union[str, List[str]]]

__call__(dp_outputs, baseline_outputs, unprotected_inputs=None, program_parameters=None)#

Computes the given metric on the given DP and baseline outputs.

Parameters
  • dp_outputs (Dict[str, pyspark.sql.DataFrame]) – The differentially private outputs of the program.

  • baseline_outputs (Dict[str, Dict[str, pyspark.sql.DataFrame]]) – The outputs of the baseline programs.

  • unprotected_inputs (Optional[Dict[str, pyspark.sql.DataFrame]]) – Optional public dataframes used in error computation.

  • program_parameters (Optional[Dict[str, Any]]) – Optional program specific parameters used in error computation.

Return type

List[tmlt.analytics.metrics.MetricOutput]

class MedianAbsoluteError(output, measure_column, join_columns, *, name=None, description=None, baselines=None)#

Bases: QuantileAbsoluteError

Computes the median absolute error.

Equivalent to QuantileAbsoluteError with quantile = 0.5.

Note

This is only available on a paid version of Tumult Analytics. If you would like to hear more, please contact us at info@tmlt.io.

Example

>>> dp_outputs = {"O": dp_df}
>>> baseline_df = spark.createDataFrame(
...     pd.DataFrame(
...         {
...             "A": ["a1", "a2", "a3"],
...             "X": [100, 100, 100]
...         }
...     )
... )
>>> baseline_outputs = {"O": baseline_df}
>>> metric = MedianAbsoluteError(
...     output="O",
...     measure_column="X",
...     join_columns=["A"]
... )
>>> metric.quantile
0.5
>>> metric.join_columns
['A']
>>> result = metric.compute_for_baseline(dp_outputs, baseline_outputs)
>>> result
10.0
>>> metric.format(result)
'10.0'
Methods#

quantile()

Returns the quantile.

measure_column()

Returns name of the column to compute the quantile of absolute error over.

format()

Returns a string representation of this object.

compute_on_joined_output()

Computes quantile absolute error value from combined dataframe.

output()

Returns the name of the run output or view name.

join_columns()

Returns the name of the join columns.

check_join_key_uniqueness()

Check if the join keys uniquely identify rows in the joined DataFrame.

compute_for_baseline()

Computes metric value.

name()

Returns the name of the metric.

description()

Returns the description of the metric.

baselines()

Returns the baselines used for the metric.

__call__()

Computes the given metric on the given DP and baseline outputs.

Parameters
  • output (str) –

  • measure_column (str) –

  • join_columns (List[str]) –

  • name (Optional[str]) –

  • description (Optional[str]) –

  • baselines (Optional[List[str]]) –

__init__(output, measure_column, join_columns, *, name=None, description=None, baselines=None)#

Constructor.

Parameters
  • output (strstr) – The output to compute the metric for.

  • measure_column (strstr) – The column to compute the median of absolute error over.

  • join_columns (List[str]List[str]) – Columns to join on.

  • name (str | NoneOptional[str] (default: None)) – A name for the metric.

  • description (str | NoneOptional[str] (default: None)) – A description of the metric.

  • baselines (List[str] | NoneOptional[List[str]] (default: None)) – The name of the baseline program(s) used for the error report. If None, use all baselines specified as custom baseline and baseline options on tuner class. If no baselines are specified on tuner class, use default baseline. If a string, use only that baseline. If a list, use only those baselines.

property quantile#

Returns the quantile.

Return type

float

property measure_column#

Returns name of the column to compute the quantile of absolute error over.

Return type

str

format(value)#

Returns a string representation of this object.

compute_on_joined_output(joined_output)#

Computes quantile absolute error value from combined dataframe.

Parameters

joined_output (pyspark.sql.DataFrame) –

property output#

Returns the name of the run output or view name.

Return type

str

property join_columns#

Returns the name of the join columns.

Return type

List[str]

check_join_key_uniqueness(joined_output)#

Check if the join keys uniquely identify rows in the joined DataFrame.

Parameters

joined_output (pyspark.sql.DataFrame) –

compute_for_baseline(dp_outputs, baseline_outputs, unprotected_inputs=None, program_parameters=None)#

Computes metric value.

Parameters
property name#

Returns the name of the metric.

Return type

str

property description#

Returns the description of the metric.

Return type

str

property baselines#

Returns the baselines used for the metric.

Return type

Optional[Union[str, List[str]]]

__call__(dp_outputs, baseline_outputs, unprotected_inputs=None, program_parameters=None)#

Computes the given metric on the given DP and baseline outputs.

Parameters
  • dp_outputs (Dict[str, pyspark.sql.DataFrame]) – The differentially private outputs of the program.

  • baseline_outputs (Dict[str, Dict[str, pyspark.sql.DataFrame]]) – The outputs of the baseline programs.

  • unprotected_inputs (Optional[Dict[str, pyspark.sql.DataFrame]]) – Optional public dataframes used in error computation.

  • program_parameters (Optional[Dict[str, Any]]) – Optional program specific parameters used in error computation.

Return type

List[tmlt.analytics.metrics.MetricOutput]

class RelativeError(output, column=None, *, name=None, description=None, baselines=None)#

Bases: tmlt.analytics.metrics._base.ScalarMetric

Computes the relative error between two scalar values.

Note

This is only available on a paid version of Tumult Analytics. If you would like to hear more, please contact us at info@tmlt.io.

How it works:

  1. The algorithm takes as input two single-row tables: one representing the differentially private (DP) output and the other representing the baseline output.

    DP Table (dp): This table contains the output data generated by a differentially private mechanism.

    Baseline Table (baseline): This table contains the output data generated by a non-private or baseline mechanism. It serves as a reference point for comparison with the DP output.

    The scalar values are retrieved from these single-row dataframes. Both values are expected to be numeric (either integers or floats). If not, the algorithm raises a ValueError.

  2. The algorithm computes the relative error. Relative error is calculated as the absolute difference between the corresponding values in the DP and baseline outputs to the value in the baseline using the formula \(abs(dp - baseline) / baseline\). If baseline is zero, it returns infinity for non-zero differences (\(∞\)) and zero for zero differences (\(0\)).

Example

>>> dp_df = spark.createDataFrame(pd.DataFrame({"A": [5]}))
>>> dp_outputs = {"O": dp_df}
>>> baseline_df = spark.createDataFrame(pd.DataFrame({"A": [5]}))
>>> baseline_outputs = {"O": baseline_df}
>>> metric = RelativeError(output="O")
>>> result = metric.compute_for_baseline(dp_outputs, baseline_outputs)
>>> result
0.0
>>> metric.format(result)
'0.0'
Parameters
  • output (str) –

  • column (Optional[str]) –

  • name (Optional[str]) –

  • description (Optional[str]) –

  • baselines (Optional[List[str]]) –

__init__(output, column=None, *, name=None, description=None, baselines=None)#

Constructor.

Parameters
  • output (strstr) – The output to compute the metric for.

  • column (str | NoneOptional[str] (default: None)) – The column to compute the relative error over. If the given output has only one column, this argument may be omitted.

  • name (str | NoneOptional[str] (default: None)) – A name for the metric.

  • description (str | NoneOptional[str] (default: None)) – A description of the metric.

  • baselines (List[str] | NoneOptional[List[str]] (default: None)) – The name of the baseline program(s) used for the error report. If None, use all baselines specified as custom baseline and baseline options on tuner class. If no baselines are specified on tuner class, use default baseline. If a string, use only that baseline. If a list, use only those baselines.

format(value)#

Returns a string representation of this object.

compute_on_scalar(dp_value, baseline_value)#

Computes metric value from DP and baseline values.

property output#

Returns the name of the run output or view name.

Return type

str

property column#

Returns the name of the value column, if it is set.

Return type

Optional[str]

compute_for_baseline(dp_outputs, baseline_outputs, unprotected_inputs=None, program_parameters=None)#

Returns the metric value given the DP outputs and the baseline outputs.

Parameters
Return type

Any

property name#

Returns the name of the metric.

Return type

str

property description#

Returns the description of the metric.

Return type

str

property baselines#

Returns the baselines used for the metric.

Return type

Optional[Union[str, List[str]]]

__call__(dp_outputs, baseline_outputs, unprotected_inputs=None, program_parameters=None)#

Computes the given metric on the given DP and baseline outputs.

Parameters
  • dp_outputs (Dict[str, pyspark.sql.DataFrame]) – The differentially private outputs of the program.

  • baseline_outputs (Dict[str, Dict[str, pyspark.sql.DataFrame]]) – The outputs of the baseline programs.

  • unprotected_inputs (Optional[Dict[str, pyspark.sql.DataFrame]]) – Optional public dataframes used in error computation.

  • program_parameters (Optional[Dict[str, Any]]) – Optional program specific parameters used in error computation.

Return type

List[tmlt.analytics.metrics.MetricOutput]

class QuantileRelativeError(output, quantile, measure_column, join_columns, *, name=None, description=None, baselines=None)#

Bases: tmlt.analytics.metrics._base.JoinedOutputMetric

Computes the quantile of the empirical relative error.

Note

This is only available on a paid version of Tumult Analytics. If you would like to hear more, please contact us at info@tmlt.io.

How it works:

  1. The algorithm takes as input two tables: one representing the differentially private (DP) output and the other representing the baseline output.

    DP Table (dp): This table contains the output data generated by a differentially private mechanism.

    Baseline Table (baseline): This table contains the output data generated by a non-private or baseline mechanism. It serves as a reference point for comparison with the DP output.

    The algorithm includes error handling to ensure the validity of the input data. It checks for the existence and numeric type of the measure_column.

    The algorithm performs an inner join between the DP and baseline tables based on join_columns to produce the combined dataframe. This join must be one-to-one, with each row in the DP table matches exactly one row in the baseline table, and vice versa. This ensures that there is a direct correspondence between the DP and baseline outputs for each entity, allowing for accurate comparison.

  2. After performing the join, the algorithm computes the relative error for each group. Relative error is calculated as the absolute difference between the corresponding values in the DP and baseline outputs to the value in the baseline using the formula \(abs(dp - baseline) / baseline\). If baseline is zero, it returns infinity for non-zero differences (\(∞\)) and zero for zero differences (\(0\)).

  3. The algorithm then calculates the n-th quantile of the relative error across all groups.

    The algorithm handles cases where the quantile computation may result in an empty column, returning a NaN (not a number) value in such scenarios.

    Note

    • Provided algorithm assumes a one-to-one join scenario.

    • Nulls in the measure columns are dropped because the metric cannot handle null values, and the absolute error computation requires valid numeric values in both columns.

Example

>>> dp_df = spark.createDataFrame(
...     pd.DataFrame(
...         {
...             "A": ["a1", "a2", "a3"],
...             "X": [50, 110, 100]
...         }
...     )
... )
>>> dp_outputs = {"O": dp_df}
>>> baseline_df = spark.createDataFrame(
...     pd.DataFrame(
...         {
...             "A": ["a1", "a2", "a3"],
...             "X": [100, 100, 100]
...         }
...     )
... )
>>> baseline_outputs = {"O": baseline_df}
>>> metric = QuantileRelativeError(
...     output="O",
...     quantile=0.5,
...     measure_column="X",
...     join_columns=["A"]
... )
>>> metric.quantile
0.5
>>> metric.join_columns
['A']
>>> result = metric.compute_for_baseline(dp_outputs, baseline_outputs)
>>> result
0.1
>>> metric.format(result)
'0.10'
Methods#

quantile()

Returns the quantile.

measure_column()

Returns name of the column to compute the quantile of relative error over.

format()

Returns a string representation of this object.

compute_on_joined_output()

Computes quantile relative error value from combined dataframe.

output()

Returns the name of the run output or view name.

join_columns()

Returns the name of the join columns.

check_join_key_uniqueness()

Check if the join keys uniquely identify rows in the joined DataFrame.

compute_for_baseline()

Computes metric value.

name()

Returns the name of the metric.

description()

Returns the description of the metric.

baselines()

Returns the baselines used for the metric.

__call__()

Computes the given metric on the given DP and baseline outputs.

Parameters
  • output (str) –

  • quantile (float) –

  • measure_column (str) –

  • join_columns (List[str]) –

  • name (Optional[str]) –

  • description (Optional[str]) –

  • baselines (Optional[List[str]]) –

__init__(output, quantile, measure_column, join_columns, *, name=None, description=None, baselines=None)#

Constructor.

Parameters
  • output (strstr) – The output to compute the metric for.

  • quantile (floatfloat) – The quantile to calculate (between 0 and 1).

  • measure_column (strstr) – The column to compute the quantile of relative error over.

  • join_columns (List[str]List[str]) – Columns to join on.

  • name (str | NoneOptional[str] (default: None)) – A name for the metric.

  • description (str | NoneOptional[str] (default: None)) – A description of the metric.

  • baselines (List[str] | NoneOptional[List[str]] (default: None)) – The name of the baseline program(s) used for the error report. If None, use all baselines specified as custom baseline and baseline options on tuner class. If no baselines are specified on tuner class, use default baseline. If a string, use only that baseline. If a list, use only those baselines.

property quantile#

Returns the quantile.

Return type

float

property measure_column#

Returns name of the column to compute the quantile of relative error over.

Return type

str

format(value)#

Returns a string representation of this object.

compute_on_joined_output(joined_output)#

Computes quantile relative error value from combined dataframe.

Parameters

joined_output (pyspark.sql.DataFrame) –

property output#

Returns the name of the run output or view name.

Return type

str

property join_columns#

Returns the name of the join columns.

Return type

List[str]

check_join_key_uniqueness(joined_output)#

Check if the join keys uniquely identify rows in the joined DataFrame.

Parameters

joined_output (pyspark.sql.DataFrame) –

compute_for_baseline(dp_outputs, baseline_outputs, unprotected_inputs=None, program_parameters=None)#

Computes metric value.

Parameters
property name#

Returns the name of the metric.

Return type

str

property description#

Returns the description of the metric.

Return type

str

property baselines#

Returns the baselines used for the metric.

Return type

Optional[Union[str, List[str]]]

__call__(dp_outputs, baseline_outputs, unprotected_inputs=None, program_parameters=None)#

Computes the given metric on the given DP and baseline outputs.

Parameters
  • dp_outputs (Dict[str, pyspark.sql.DataFrame]) – The differentially private outputs of the program.

  • baseline_outputs (Dict[str, Dict[str, pyspark.sql.DataFrame]]) – The outputs of the baseline programs.

  • unprotected_inputs (Optional[Dict[str, pyspark.sql.DataFrame]]) – Optional public dataframes used in error computation.

  • program_parameters (Optional[Dict[str, Any]]) – Optional program specific parameters used in error computation.

Return type

List[tmlt.analytics.metrics.MetricOutput]

class MedianRelativeError(output, measure_column, join_columns, *, name=None, description=None, baselines=None)#

Bases: QuantileRelativeError

Computes the median relative error.

Equivalent to QuantileRelativeError with quantile = 0.5.

Note

This is only available on a paid version of Tumult Analytics. If you would like to hear more, please contact us at info@tmlt.io.

Example

>>> dp_df = spark.createDataFrame(
...     pd.DataFrame(
...         {
...             "A": ["a1", "a2", "a3"],
...             "X": [50, 110, 100]
...         }
...     )
... )
>>> dp_outputs = {"O": dp_df}
>>> baseline_df = spark.createDataFrame(
...     pd.DataFrame(
...         {
...             "A": ["a1", "a2", "a3"],
...             "X": [100, 100, 100]
...         }
...     )
... )
>>> baseline_outputs = {"O": baseline_df}
>>> metric = MedianRelativeError(
...     output="O",
...     measure_column="X",
...     join_columns=["A"]
... )
>>> metric.quantile
0.5
>>> metric.join_columns
['A']
>>> result = metric.compute_for_baseline(dp_outputs, baseline_outputs)
>>> result
0.1
>>> metric.format(result)
'0.10'
Methods#

quantile()

Returns the quantile.

measure_column()

Returns name of the column to compute the quantile of relative error over.

format()

Returns a string representation of this object.

compute_on_joined_output()

Computes quantile relative error value from combined dataframe.

output()

Returns the name of the run output or view name.

join_columns()

Returns the name of the join columns.

check_join_key_uniqueness()

Check if the join keys uniquely identify rows in the joined DataFrame.

compute_for_baseline()

Computes metric value.

name()

Returns the name of the metric.

description()

Returns the description of the metric.

baselines()

Returns the baselines used for the metric.

__call__()

Computes the given metric on the given DP and baseline outputs.

Parameters
  • output (str) –

  • measure_column (str) –

  • join_columns (List[str]) –

  • name (Optional[str]) –

  • description (Optional[str]) –

  • baselines (Optional[List[str]]) –

__init__(output, measure_column, join_columns, *, name=None, description=None, baselines=None)#

Constructor.

Parameters
  • output (strstr) – The output to compute the metric for.

  • measure_column (strstr) – The column to compute the median of relative error over.

  • join_columns (List[str]List[str]) – Columns to join on.

  • name (str | NoneOptional[str] (default: None)) – A name for the metric.

  • description (str | NoneOptional[str] (default: None)) – A description of the metric.

  • baselines (List[str] | NoneOptional[List[str]] (default: None)) – The name of the baseline program(s) used for the error report. If None, use all baselines specified as custom baseline and baseline options on tuner class. If no baselines are specified on tuner class, use default baseline. If a string, use only that baseline. If a list, use only those baselines.

property quantile#

Returns the quantile.

Return type

float

property measure_column#

Returns name of the column to compute the quantile of relative error over.

Return type

str

format(value)#

Returns a string representation of this object.

compute_on_joined_output(joined_output)#

Computes quantile relative error value from combined dataframe.

Parameters

joined_output (pyspark.sql.DataFrame) –

property output#

Returns the name of the run output or view name.

Return type

str

property join_columns#

Returns the name of the join columns.

Return type

List[str]

check_join_key_uniqueness(joined_output)#

Check if the join keys uniquely identify rows in the joined DataFrame.

Parameters

joined_output (pyspark.sql.DataFrame) –

compute_for_baseline(dp_outputs, baseline_outputs, unprotected_inputs=None, program_parameters=None)#

Computes metric value.

Parameters
property name#

Returns the name of the metric.

Return type

str

property description#

Returns the description of the metric.

Return type

str

property baselines#

Returns the baselines used for the metric.

Return type

Optional[Union[str, List[str]]]

__call__(dp_outputs, baseline_outputs, unprotected_inputs=None, program_parameters=None)#

Computes the given metric on the given DP and baseline outputs.

Parameters
  • dp_outputs (Dict[str, pyspark.sql.DataFrame]) – The differentially private outputs of the program.

  • baseline_outputs (Dict[str, Dict[str, pyspark.sql.DataFrame]]) – The outputs of the baseline programs.

  • unprotected_inputs (Optional[Dict[str, pyspark.sql.DataFrame]]) – Optional public dataframes used in error computation.

  • program_parameters (Optional[Dict[str, Any]]) – Optional program specific parameters used in error computation.

Return type

List[tmlt.analytics.metrics.MetricOutput]

class HighRelativeErrorFraction(output, relative_error_threshold, measure_column, join_columns, *, name=None, description=None, baselines=None)#

Bases: tmlt.analytics.metrics._base.JoinedOutputMetric

Computes the fraction of groups with relative error above a threshold.

Note

This is only available on a paid version of Tumult Analytics. If you would like to hear more, please contact us at info@tmlt.io.

How it works:

  1. The algorithm takes as input two tables: one representing the differentially private (DP) output and the other representing the baseline output.

    DP Table (dp): This table contains the output data generated by a differentially private mechanism.

    Baseline Table (baseline): This table contains the output data generated by a non-private or baseline mechanism. It serves as a reference point for comparison with the DP output.

    The algorithm includes error handling to ensure the validity of the input data. It checks for the existence and numeric type of the measure_column.

    The algorithm performs an inner join between the DP and baseline tables based on join_columns to produce the combined dataframe. This join must be one-to-one, with each row in the DP table matches exactly one row in the baseline table, and vice versa. This ensures that there is a direct correspondence between the DP and baseline outputs for each entity, allowing for accurate comparison.

  2. After performing the join, the algorithm computes the relative error for each group. Relative error is calculated as the absolute difference between the corresponding values in the DP and baseline outputs to the value in the baseline using the formula \(abs(dp - baseline) / baseline\). If baseline is zero, it returns infinity for non-zero differences (\(∞\)) and zero for zero differences (\(0\)).

  3. Next, the algorithm filters the relative error dataframe to include only those data points where the relative error exceeds a specified threshold (relative_error_threshold). This threshold represents the maximum allowable relative error for a data point to be considered within acceptable bounds.

  4. Finally, the algorithm then calculates the high relative error fraction by dividing the count of data points with relative errors exceeding the threshold by the total count of data points in the dataframe.

    The algorithm handles cases where the resulting dataframe after relative error computation is empty (i.e., it contains no data points), returning a NaN (not a number) value in such scenarios.

    Note

    • Provided algorithm assumes a one-to-one join scenario.

    • Nulls in the measure columns are dropped because the metric cannot handle null values, and the absolute error computation requires valid numeric values in both columns.

Example

>>> dp_df = spark.createDataFrame(
...     pd.DataFrame(
...         {
...             "A": ["a1", "a2", "a3"],
...             "X": [50, 110, 100]
...         }
...     )
... )
>>> dp_outputs = {"O": dp_df}
>>> baseline_df = spark.createDataFrame(
...     pd.DataFrame(
...         {
...             "A": ["a1", "a2", "a3"],
...             "X": [100, 100, 100]
...         }
...     )
... )
>>> baseline_outputs = {"O": baseline_df}
>>> metric = HighRelativeErrorFraction(
...     output="O",
...     measure_column="X",
...     relative_error_threshold=0.25,
...     join_columns=["A"]
... )
>>> metric.relative_error_threshold
0.25
>>> metric.join_columns
['A']
>>> result = metric.compute_for_baseline(dp_outputs, baseline_outputs)
>>> result
0.3333333333333333
>>> metric.format(result)
'0.33'
Methods#

relative_error_threshold()

Returns the relative error threshold.

measure_column()

Returns name of the column to compute the relative error over.

format()

Returns a string representation of this object.

compute_on_joined_output()

Computes high relative error fraction from combined dataframe.

output()

Returns the name of the run output or view name.

join_columns()

Returns the name of the join columns.

check_join_key_uniqueness()

Check if the join keys uniquely identify rows in the joined DataFrame.

compute_for_baseline()

Computes metric value.

name()

Returns the name of the metric.

description()

Returns the description of the metric.

baselines()

Returns the baselines used for the metric.

__call__()

Computes the given metric on the given DP and baseline outputs.

Parameters
  • output (str) –

  • relative_error_threshold (float) –

  • measure_column (str) –

  • join_columns (List[str]) –

  • name (Optional[str]) –

  • description (Optional[str]) –

  • baselines (Optional[str]) –

__init__(output, relative_error_threshold, measure_column, join_columns, *, name=None, description=None, baselines=None)#

Constructor.

Parameters
  • output (strstr) – The output to compute the metric for.

  • relative_error_threshold (floatfloat) – The threshold for the relative error.

  • measure_column (strstr) – The column to compute relative error over.

  • join_columns (List[str]List[str]) – Columns to join on.

  • name (str | NoneOptional[str] (default: None)) – A name for the metric.

  • description (str | NoneOptional[str] (default: None)) – A description of the metric.

  • baselines (str | NoneOptional[str] (default: None)) – The name of the baseline program(s) used for the error report. If None, use all baselines specified as custom baseline and baseline options on tuner class. If no baselines are specified on tuner class, use default baseline. If a string, use only that baseline. If a list, use only those baselines.

property relative_error_threshold#

Returns the relative error threshold.

Return type

float

property measure_column#

Returns name of the column to compute the relative error over.

Return type

str

format(value)#

Returns a string representation of this object.

compute_on_joined_output(joined_output)#

Computes high relative error fraction from combined dataframe.

Parameters

joined_output (pyspark.sql.DataFrame) –

property output#

Returns the name of the run output or view name.

Return type

str

property join_columns#

Returns the name of the join columns.

Return type

List[str]

check_join_key_uniqueness(joined_output)#

Check if the join keys uniquely identify rows in the joined DataFrame.

Parameters

joined_output (pyspark.sql.DataFrame) –

compute_for_baseline(dp_outputs, baseline_outputs, unprotected_inputs=None, program_parameters=None)#

Computes metric value.

Parameters
property name#

Returns the name of the metric.

Return type

str

property description#

Returns the description of the metric.

Return type

str

property baselines#

Returns the baselines used for the metric.

Return type

Optional[Union[str, List[str]]]

__call__(dp_outputs, baseline_outputs, unprotected_inputs=None, program_parameters=None)#

Computes the given metric on the given DP and baseline outputs.

Parameters
  • dp_outputs (Dict[str, pyspark.sql.DataFrame]) – The differentially private outputs of the program.

  • baseline_outputs (Dict[str, Dict[str, pyspark.sql.DataFrame]]) – The outputs of the baseline programs.

  • unprotected_inputs (Optional[Dict[str, pyspark.sql.DataFrame]]) – Optional public dataframes used in error computation.

  • program_parameters (Optional[Dict[str, Any]]) – Optional program specific parameters used in error computation.

Return type

List[tmlt.analytics.metrics.MetricOutput]

class SpuriousRate(output, join_columns, *, name=None, description=None, baselines=None)#

Bases: tmlt.analytics.metrics._base.SingleBaselineMetric

Computes the fraction of groups in the DP output but not in the baseline output.

Note

This is only available on a paid version of Tumult Analytics. If you would like to hear more, please contact us at info@tmlt.io.

Note

Below, released means that the group is in the DP output, and spurious means that the group is not in the baseline output.

How it works:

  1. The algorithm takes two dictionaries as input:

  • dp_outputs: A dictionary containing the differentially private (DP) outputs, where keys represent output identifiers and values represent corresponding DP output. The DP output data is generated by a differentially private mechanism.

  • baseline_outputs: A dictionary containing the baseline outputs, where keys represent output identifiers and values represent corresponding baseline table (baseline).

Before performing computations, the algorithm checks if the released count of DP output (released count) is zero. If so, it returns NaN, indicating that no computation can be performed due to the absence of released data. If not, the algorithm performs a left anti-join between the DP and baseline tables based on join_columns. This returns all rows from the DP output (left dataframe) where there is no match in the baseline output (right dataframe). The count of these rows is the spurious released count.

  1. After performing the join, the algorithm computes the spurious rate by dividing the spurious released count by the total count of released data points (released_count), using the formula \(\text{spurious released count} / \text{released count}\). The result represents the proportion of released data points in the DP output that have no corresponding data points in the baseline output.

Example

>>> dp_df = spark.createDataFrame(
...     pd.DataFrame(
...         {
...             "A": ["a1", "a1", "a2", "c"],
...             "X": [50, 110, 100, 50]
...         }
...     )
... )
>>> dp_outputs = {"O": dp_df}
>>> baseline_df = spark.createDataFrame(
...     pd.DataFrame(
...         {
...             "A": ["a1", "a1", "a2", "b"],
...             "X": [100, 100, 100, 50]
...         }
...     )
... )
>>> baseline_outputs = {"O": baseline_df}
>>> metric = SpuriousRate(
...     output="O",
...     join_columns=["A"]
... )
>>> metric.join_columns
['A']
>>> metric.compute_for_baseline(dp_outputs, baseline_outputs)
0.25
Parameters
  • output (str) –

  • join_columns (List[str]) –

  • name (Optional[str]) –

  • description (Optional[str]) –

  • baselines (Optional[Union[str, List[str]]]) –

__init__(output, join_columns, *, name=None, description=None, baselines=None)#

Constructor.

Parameters
  • output (strstr) – The output to compute the spurious rate for.

  • join_columns (List[str]List[str]) – The columns to join on.

  • name (str | NoneOptional[str] (default: None)) – A name for the metric.

  • description (str | NoneOptional[str] (default: None)) – A description of the metric.

  • baselines (str | List[str] | NoneUnion[str, List[str], None] (default: None)) – The name of the baseline program(s) used for the error report. If None, use all baselines specified as custom baseline and baseline options on tuner class. If no baselines are specified on tuner class, use default baseline. If a string, use only that baseline. If a list, use only those baselines.

property output#

Returns the name of the run output or view name.

Return type

str

property join_columns#

Returns the name of the join columns.

Return type

List[str]

format(value)#

Returns a string representation of this object.

check_compatibility_with_program(program, output_views)#

Checks if the metric is compatible with the program.

This is a dynamic check and is performed by verifying whether the output attribute of the metric object is present in the annotations of the Outputs attribute of the program. If the output attribute is not found in the annotations, a ValueError is raised.

Parameters
compute_for_baseline(dp_outputs, baseline_outputs, unprotected_inputs=None, program_parameters=None)#

Computes spurious rate given DP and baseline outputs.

Parameters
property name#

Returns the name of the metric.

Return type

str

property description#

Returns the description of the metric.

Return type

str

property baselines#

Returns the baselines used for the metric.

Return type

Optional[Union[str, List[str]]]

__call__(dp_outputs, baseline_outputs, unprotected_inputs=None, program_parameters=None)#

Computes the given metric on the given DP and baseline outputs.

Parameters
  • dp_outputs (Dict[str, pyspark.sql.DataFrame]) – The differentially private outputs of the program.

  • baseline_outputs (Dict[str, Dict[str, pyspark.sql.DataFrame]]) – The outputs of the baseline programs.

  • unprotected_inputs (Optional[Dict[str, pyspark.sql.DataFrame]]) – Optional public dataframes used in error computation.

  • program_parameters (Optional[Dict[str, Any]]) – Optional program specific parameters used in error computation.

Return type

List[tmlt.analytics.metrics.MetricOutput]

class SuppressionRate(output, join_columns, *, name=None, description=None, baselines=None)#

Bases: tmlt.analytics.metrics._base.SingleBaselineMetric

Computes the fraction of groups in the baseline output but not in the DP output.

Note

This is only available on a paid version of Tumult Analytics. If you would like to hear more, please contact us at info@tmlt.io.

Note

Below, released means that the group is in the DP output, and spurious means that the group is not in the output of the baseline.

How it works:

  1. The algorithm takes two dictionaries as input:

  • dp_outputs: A dictionary containing the differentially private (DP) outputs, where keys represent output identifiers and values represent corresponding DP output. The DP output data is generated by a differentially private mechanism.

  • baseline_outputs: A dictionary containing the baseline outputs, where keys represent output identifiers and values represent corresponding baseline table (baseline).

Before performing computations, the algorithm checks if the count of baseline output (non-spurious count) is zero. If so, it returns NaN, indicating that no computation can be performed due to the absence of non-spurious data in the baseline outputs. If not, the algorithm performs a left anti-join between the baseline and DP tables based on join_columns. This returns all rows from the baseline (left dataframe) where there is no match in the DP output (right dataframe). The count of these rows is the non-spurious non-released count.

  1. After performing the join, the algorithm computes the suppression rate by dividing the non-spurious non-released count by the total count of non-spurious data points (non-spurious count), using the formula \(\text{non-spurious non-released count} / \text{non-spurious count}\). The result represents the proportion of non-spurious data points in the baseline outputs that are not released in the DP outputs.

Example

>>> dp_df = spark.createDataFrame(
...     pd.DataFrame(
...         {
...             "A": ["a1", "a1", "a2", "c"],
...             "X": [50, 110, 100, 50]
...         }
...     )
... )
>>> dp_outputs = {"O": dp_df}
>>> baseline_df = spark.createDataFrame(
...     pd.DataFrame(
...         {
...             "A": ["a1", "a1", "a2", "b"],
...             "X": [100, 100, 100, 50]
...         }
...     )
... )
>>> baseline_outputs = {"O": baseline_df}
>>> metric = SuppressionRate(
...     output="O",
...     join_columns=["A"]
... )
>>> metric.join_columns
['A']
>>> metric.compute_for_baseline(dp_outputs, baseline_outputs)
0.25
Parameters
  • output (str) –

  • join_columns (List[str]) –

  • name (Optional[str]) –

  • description (Optional[str]) –

  • baselines (Optional[Union[str, List[str]]]) –

__init__(output, join_columns, *, name=None, description=None, baselines=None)#

Constructor.

Parameters
  • output (strstr) – Which output to compute the suppression rate for.

  • join_columns (List[str]List[str]) – The columns to join on.

  • name (str | NoneOptional[str] (default: None)) – A name for the metric.

  • description (str | NoneOptional[str] (default: None)) – A description of the metric.

  • baselines (str | List[str] | NoneUnion[str, List[str], None] (default: None)) – The name of the baseline program(s) used for the error report. If None, use all baselines specified as custom baseline and baseline options on tuner class. If no baselines are specified on tuner class, use default baseline. If a string, use only that baseline. If a list, use only those baselines.

property output#

Returns the name of the run output or view name.

Return type

str

property join_columns#

Returns the name of the join columns.

Return type

List[str]

format(value)#

Returns a string representation of this object.

check_compatibility_with_program(program, output_views)#

Checks if the metric is compatible with the program.

This is a dynamic check and is performed by verifying whether the output attribute of the metric object is present in the annotations of the Outputs attribute of the program. If the output attribute is not found in the annotations, a ValueError is raised.

Parameters
compute_for_baseline(dp_outputs, baseline_outputs, unprotected_inputs=None, program_parameters=None)#

Computes suppression rate given DP and baseline outputs.

Parameters
property name#

Returns the name of the metric.

Return type

str

property description#

Returns the description of the metric.

Return type

str

property baselines#

Returns the baselines used for the metric.

Return type

Optional[Union[str, List[str]]]

__call__(dp_outputs, baseline_outputs, unprotected_inputs=None, program_parameters=None)#

Computes the given metric on the given DP and baseline outputs.

Parameters
  • dp_outputs (Dict[str, pyspark.sql.DataFrame]) – The differentially private outputs of the program.

  • baseline_outputs (Dict[str, Dict[str, pyspark.sql.DataFrame]]) – The outputs of the baseline programs.

  • unprotected_inputs (Optional[Dict[str, pyspark.sql.DataFrame]]) – Optional public dataframes used in error computation.

  • program_parameters (Optional[Dict[str, Any]]) – Optional program specific parameters used in error computation.

Return type

List[tmlt.analytics.metrics.MetricOutput]

class CustomSingleOutputMetric(func, output, *, name, description=None, baselines=None)#

Bases: tmlt.analytics.metrics._base.SingleBaselineMetric

Wrapper to allow users to define a metric that operates on a single output table.

Turns a function that calculates error on two dataframes (one DP, one baseline) into a Metric.

Note

This is only available on a paid version of Tumult Analytics. If you would like to hear more, please contact us at info@tmlt.io.

Example

>>> dp_df = spark.createDataFrame(pd.DataFrame({"A": [5]}))
>>> dp_outputs = {"O": dp_df}
>>> baseline_df = spark.createDataFrame(pd.DataFrame({"A": [5]}))
>>> baseline_outputs = {"O": baseline_df}
>>> def size_difference(dp_outputs: DataFrame, baseline_outputs: DataFrame):
...     return baseline_outputs.count() - dp_outputs.count()
>>> metric = CustomSingleOutputMetric(
...     func=size_difference,
...     name="Output size difference",
...     description="Difference in number of rows.",
...     output="O",
... )
>>> result = metric.compute_for_baseline(dp_outputs, baseline_outputs)
>>> result
0
>>> metric.format(result)
'0'
Parameters
  • func (Callable) –

  • output (str) –

  • name (str) –

  • description (Optional[str]) –

  • baselines (Optional[Union[str, List[str]]]) –

__init__(func, output, *, name, description=None, baselines=None)#

Constructor.

Parameters
  • func (CallableCallable) – Function for computing a metric value from DP outputs and a single baseline’s outputs.

  • output (strstr) – The output to calculate the metric over. This is required, even if the program produces a single output.

  • name (strstr) – A name for the metric.

  • description (str | NoneOptional[str] (default: None)) – A description of the metric.

  • baselines (str | List[str] | NoneUnion[str, List[str], None] (default: None)) – The name of the baseline program(s) used for the error report. If None, use all baselines specified as custom baseline and baseline options on tuner class. If no baselines are specified on tuner class, use default baseline. If a string, use only that baseline. If a list, use only those baselines.

property output#

Returns the name of the run output or view name.

Return type

str

property func#

Returns function to be applied.

Return type

Callable

format(value)#

Converts value to human-readable format.

Parameters

value (Any) –

check_compatibility_with_program(program, output_views)#

Checks if the metric is compatible with the program.

Parameters
compute_for_baseline(dp_outputs, baseline_outputs, unprotected_inputs=None, program_parameters=None)#

Returns the metric value given the DP outputs and the baseline outputs.

Parameters
property name#

Returns the name of the metric.

Return type

str

property description#

Returns the description of the metric.

Return type

str

property baselines#

Returns the baselines used for the metric.

Return type

Optional[Union[str, List[str]]]

__call__(dp_outputs, baseline_outputs, unprotected_inputs=None, program_parameters=None)#

Computes the given metric on the given DP and baseline outputs.

Parameters
  • dp_outputs (Dict[str, pyspark.sql.DataFrame]) – The differentially private outputs of the program.

  • baseline_outputs (Dict[str, Dict[str, pyspark.sql.DataFrame]]) – The outputs of the baseline programs.

  • unprotected_inputs (Optional[Dict[str, pyspark.sql.DataFrame]]) – Optional public dataframes used in error computation.

  • program_parameters (Optional[Dict[str, Any]]) – Optional program specific parameters used in error computation.

Return type

List[tmlt.analytics.metrics.MetricOutput]

class CustomMultiBaselineMetric(output, func, *, name, description=None, baselines=None)#

Bases: tmlt.analytics.metrics._base.MultiBaselineMetric

Wrapper to turn a function into a metric using DP and single baseline’s output.

Note

This is only available on a paid version of Tumult Analytics. If you would like to hear more, please contact us at info@tmlt.io.

Example

>>> dp_df = spark.createDataFrame(pd.DataFrame({"A": [5]}))
>>> dp_outputs = {"O": dp_df}
>>> baseline_df1 = spark.createDataFrame(pd.DataFrame({"A": [5]}))
>>> baseline_df2 = spark.createDataFrame(pd.DataFrame({"A": [6]}))
>>> baseline_outputs = {
...    "O": {"baseline1": baseline_df1, "baseline2": baseline_df2}
... }
>>> _func = lambda dp_outputs, baseline_outputs: {
...    output_key: {
...         baseline_key: AbsoluteError(output_key).compute_on_scalar(
...                 dp_output.first().A, baseline_output.first().A
...         )
...         for baseline_key, baseline_output
...         in baseline_outputs[output_key].items()
...     }
...     for output_key, dp_output in dp_outputs.items()
...  }
>>> metric = CustomMultiBaselineMetric(
...     output="O",
...     func=_func,
...     name="Custom Metric",
...     description="Custom Description",
... )
>>> result = metric.compute_for_multiple_baselines(dp_outputs, baseline_outputs)
>>> result
{'O': {'baseline1': 0, 'baseline2': 1}}
Parameters
  • output (str) –

  • func (Callable) –

  • name (str) –

  • description (Optional[str]) –

  • baselines (Optional[Union[str, List[str]]]) –

__init__(output, func, *, name, description=None, baselines=None)#

Constructor.

Parameters
  • output (strstr) – The output to compute the metric for.

  • func (CallableCallable) – Function for computing a metric value from DP outputs and multiple baseline outputs.

  • name (strstr) – A name for the metric.

  • description (str | NoneOptional[str] (default: None)) – A description of the metric.

  • baselines (str | List[str] | NoneUnion[str, List[str], None] (default: None)) – The name of the baseline program(s) used for the error report. If None, use all baselines specified as custom baseline and baseline options on tuner class. If no baselines are specified on tuner class, use default baseline. If a string, use only that baseline. If a list, use only those baselines.

property output#

Returns the name of the run output or view name.

Return type

str

property func#

Returns function to be applied.

Return type

Callable

format(value)#

Converts value to human-readable format.

Parameters

value (Any) –

check_compatibility_with_program(program, output_views)#

Checks if the metric is compatible with the program.

Parameters
compute_for_multiple_baselines(dp_outputs, baseline_outputs, unprotected_inputs=None, program_parameters=None)#

Returns the metric value given the DP and multiple baseline outputs.

Parameters
compute(dp_outputs, baseline_outputs, unprotected_inputs=None, program_parameters=None)#

Computes the given metric on the given DP and baseline outputs.

The baseline_outputs will already be filtered to only include the baselines that the metric is supposed to use.

Parameters
  • dp_outputs (Dict[str, pyspark.sql.DataFrame]) – The differentially private outputs of the program.

  • baseline_outputs (Dict[str, Dict[str, pyspark.sql.DataFrame]]) – The outputs of the baseline programs, after filtering to only include the baselines that the metric is supposed to use.

  • unprotected_inputs (Optional[Dict[str, pyspark.sql.DataFrame]]) – Optional public dataframes used in error computation.

  • program_parameters (Optional[Dict[str, Any]]) – Optional program specific parameters used in error computation.

Return type

List[tmlt.analytics.metrics.MetricOutput]

property name#

Returns the name of the metric.

Return type

str

property description#

Returns the description of the metric.

Return type

str

property baselines#

Returns the baselines used for the metric.

Return type

Optional[Union[str, List[str]]]

__call__(dp_outputs, baseline_outputs, unprotected_inputs=None, program_parameters=None)#

Computes the given metric on the given DP and baseline outputs.

Parameters
  • dp_outputs (Dict[str, pyspark.sql.DataFrame]) – The differentially private outputs of the program.

  • baseline_outputs (Dict[str, Dict[str, pyspark.sql.DataFrame]]) – The outputs of the baseline programs.

  • unprotected_inputs (Optional[Dict[str, pyspark.sql.DataFrame]]) – Optional public dataframes used in error computation.

  • program_parameters (Optional[Dict[str, Any]]) – Optional program specific parameters used in error computation.

Return type

List[tmlt.analytics.metrics.MetricOutput]

class Metric(name, description, baselines)#

Bases: abc.ABC

A generic metric.

Note

This is only available on a paid version of Tumult Analytics. If you would like to hear more, please contact us at info@tmlt.io.

Parameters
  • name (str) –

  • description (str) –

  • baselines (Optional[Union[str, List[str]]]) –

__init__(name, description, baselines)#

Constructor.

Parameters
  • name (strstr) – A name for the metric.

  • description (strstr) – A description of the metric.

  • baselines (str | List[str] | NoneUnion[str, List[str], None]) – The name of the baseline program(s) used for the error report. If None, use all baselines specified as custom baseline and baseline options on tuner class. If no baselines are specified on tuner class, use default baseline. If a string, use only that baseline. If a list, use only those baselines.

property name#

Returns the name of the metric.

Return type

str

property description#

Returns the description of the metric.

Return type

str

property baselines#

Returns the baselines used for the metric.

Return type

Optional[Union[str, List[str]]]

abstract format(value)#

Converts value to human-readable format.

Parameters

value (Any) –

__call__(dp_outputs, baseline_outputs, unprotected_inputs=None, program_parameters=None)#

Computes the given metric on the given DP and baseline outputs.

Parameters
  • dp_outputs (Dict[str, pyspark.sql.DataFrame]) – The differentially private outputs of the program.

  • baseline_outputs (Dict[str, Dict[str, pyspark.sql.DataFrame]]) – The outputs of the baseline programs.

  • unprotected_inputs (Optional[Dict[str, pyspark.sql.DataFrame]]) – Optional public dataframes used in error computation.

  • program_parameters (Optional[Dict[str, Any]]) – Optional program specific parameters used in error computation.

Return type

List[tmlt.analytics.metrics.MetricOutput]

class MetricOutput#

An output of a Metric with additional metadata.

Note

💡 This is only available on a paid version of Tumult Analytics. If you would like to hear more, please contact us at info@tmlt.io.

name :str#

The name of the metric.

description :str#

The description of the metric.

baseline :Union[str, List[str]]#

The name of the baseline program(s) used for the error report.

metric :Metric#

The metric that was used.

value :Any#

The value of the metric applied to the program outputs.

format()#

Returns a string representation of this object.