_relative_error#
Metric functions for relating to relative error.
Classes#
Computes the relative error between two scalar values. |
|
Computes the quantile of the empirical relative error. |
|
Computes the median relative error. |
|
Computes the fraction of groups with relative error above a threshold. |
- class RelativeError(output, column=None, *, name=None, description=None, baselines=None)#
Bases:
tmlt.analytics.metrics._base.ScalarMetric
Computes the relative error between two scalar values.
Note
This is only available on a paid version of Tumult Analytics. If you would like to hear more, please contact us at info@tmlt.io.
How it works:
The algorithm takes as input two single-row tables: one representing the differentially private (DP) output and the other representing the baseline output.
DP Table (dp): This table contains the output data generated by a differentially private mechanism.
Baseline Table (baseline): This table contains the output data generated by a non-private or baseline mechanism. It serves as a reference point for comparison with the DP output.
The scalar values are retrieved from these single-row dataframes. Both values are expected to be numeric (either integers or floats). If not, the algorithm raises a
ValueError
.The algorithm computes the relative error. Relative error is calculated as the absolute difference between the corresponding values in the DP and baseline outputs to the value in the baseline using the formula \(abs(dp - baseline) / baseline\). If baseline is zero, it returns infinity for non-zero differences (\(∞\)) and zero for zero differences (\(0\)).
Example
>>> dp_df = spark.createDataFrame(pd.DataFrame({"A": [5]})) >>> dp_outputs = {"O": dp_df} >>> baseline_df = spark.createDataFrame(pd.DataFrame({"A": [5]})) >>> baseline_outputs = {"O": baseline_df}
>>> metric = RelativeError(output="O") >>> result = metric.compute_for_baseline(dp_outputs, baseline_outputs) >>> result 0.0 >>> metric.format(result) '0.0'
- Parameters
- __init__(output, column=None, *, name=None, description=None, baselines=None)#
Constructor.
- Parameters
column (
str
|None
Optional
[str
] (default:None
)) – The column to compute the relative error over. If the given output has only one column, this argument may be omitted.name (
str
|None
Optional
[str
] (default:None
)) – A name for the metric.description (
str
|None
Optional
[str
] (default:None
)) – A description of the metric.baselines (
List
[str
] |None
Optional
[List
[str
]] (default:None
)) – The name of the baseline program(s) used for the error report. If None, use all baselines specified as custom baseline and baseline options on tuner class. If no baselines are specified on tuner class, use default baseline. If a string, use only that baseline. If a list, use only those baselines.
- format(value)#
Returns a string representation of this object.
- compute_on_scalar(dp_value, baseline_value)#
Computes metric value from DP and baseline values.
- compute_for_baseline(dp_outputs, baseline_outputs, unprotected_inputs=None, program_parameters=None)#
Returns the metric value given the DP outputs and the baseline outputs.
- Parameters
dp_outputs (Dict[str, pyspark.sql.DataFrame]) –
baseline_outputs (Dict[str, pyspark.sql.DataFrame]) –
unprotected_inputs (Optional[Dict[str, pyspark.sql.DataFrame]]) –
program_parameters (Optional[Dict[str, Any]]) –
- Return type
Any
- property baselines#
Returns the baselines used for the metric.
- __call__(dp_outputs, baseline_outputs, unprotected_inputs=None, program_parameters=None)#
Computes the given metric on the given DP and baseline outputs.
- Parameters
dp_outputs (Dict[str, pyspark.sql.DataFrame]) – The differentially private outputs of the program.
baseline_outputs (Dict[str, Dict[str, pyspark.sql.DataFrame]]) – The outputs of the baseline programs.
unprotected_inputs (Optional[Dict[str, pyspark.sql.DataFrame]]) – Optional public dataframes used in error computation.
program_parameters (Optional[Dict[str, Any]]) – Optional program specific parameters used in error computation.
- Return type
- class QuantileRelativeError(output, quantile, measure_column, join_columns, *, name=None, description=None, baselines=None)#
Bases:
tmlt.analytics.metrics._base.JoinedOutputMetric
Computes the quantile of the empirical relative error.
Note
This is only available on a paid version of Tumult Analytics. If you would like to hear more, please contact us at info@tmlt.io.
How it works:
The algorithm takes as input two tables: one representing the differentially private (DP) output and the other representing the baseline output.
DP Table (dp): This table contains the output data generated by a differentially private mechanism.
Baseline Table (baseline): This table contains the output data generated by a non-private or baseline mechanism. It serves as a reference point for comparison with the DP output.
The algorithm includes error handling to ensure the validity of the input data. It checks for the existence and numeric type of the
measure_column
.The algorithm performs an inner join between the DP and baseline tables based on
join_columns
to produce the combined dataframe. This join must be one-to-one, with each row in the DP table matches exactly one row in the baseline table, and vice versa. This ensures that there is a direct correspondence between the DP and baseline outputs for each entity, allowing for accurate comparison.After performing the join, the algorithm computes the relative error for each group. Relative error is calculated as the absolute difference between the corresponding values in the DP and baseline outputs to the value in the baseline using the formula \(abs(dp - baseline) / baseline\). If baseline is zero, it returns infinity for non-zero differences (\(∞\)) and zero for zero differences (\(0\)).
The algorithm then calculates the n-th quantile of the relative error across all groups.
The algorithm handles cases where the quantile computation may result in an empty column, returning a NaN (not a number) value in such scenarios.
Note
Provided algorithm assumes a one-to-one join scenario.
Nulls in the measure columns are dropped because the metric cannot handle null values, and the absolute error computation requires valid numeric values in both columns.
Example
>>> dp_df = spark.createDataFrame( ... pd.DataFrame( ... { ... "A": ["a1", "a2", "a3"], ... "X": [50, 110, 100] ... } ... ) ... ) >>> dp_outputs = {"O": dp_df} >>> baseline_df = spark.createDataFrame( ... pd.DataFrame( ... { ... "A": ["a1", "a2", "a3"], ... "X": [100, 100, 100] ... } ... ) ... ) >>> baseline_outputs = {"O": baseline_df}
>>> metric = QuantileRelativeError( ... output="O", ... quantile=0.5, ... measure_column="X", ... join_columns=["A"] ... ) >>> metric.quantile 0.5 >>> metric.join_columns ['A'] >>> result = metric.compute_for_baseline(dp_outputs, baseline_outputs) >>> result 0.1 >>> metric.format(result) '0.10'
Methods# Returns the quantile.
Returns name of the column to compute the quantile of relative error over.
Returns a string representation of this object.
Computes quantile relative error value from combined dataframe.
Returns the name of the run output or view name.
Returns the name of the join columns.
Check if the join keys uniquely identify rows in the joined DataFrame.
Computes metric value.
Returns the name of the metric.
Returns the description of the metric.
Returns the baselines used for the metric.
Computes the given metric on the given DP and baseline outputs.
- Parameters
- __init__(output, quantile, measure_column, join_columns, *, name=None, description=None, baselines=None)#
Constructor.
- Parameters
quantile (
float
float
) – The quantile to calculate (between 0 and 1).measure_column (
str
str
) – The column to compute the quantile of relative error over.name (
str
|None
Optional
[str
] (default:None
)) – A name for the metric.description (
str
|None
Optional
[str
] (default:None
)) – A description of the metric.baselines (
List
[str
] |None
Optional
[List
[str
]] (default:None
)) – The name of the baseline program(s) used for the error report. If None, use all baselines specified as custom baseline and baseline options on tuner class. If no baselines are specified on tuner class, use default baseline. If a string, use only that baseline. If a list, use only those baselines.
- property measure_column#
Returns name of the column to compute the quantile of relative error over.
- Return type
- format(value)#
Returns a string representation of this object.
- compute_on_joined_output(joined_output)#
Computes quantile relative error value from combined dataframe.
- Parameters
joined_output (pyspark.sql.DataFrame) –
- check_join_key_uniqueness(joined_output)#
Check if the join keys uniquely identify rows in the joined DataFrame.
- Parameters
joined_output (pyspark.sql.DataFrame) –
- compute_for_baseline(dp_outputs, baseline_outputs, unprotected_inputs=None, program_parameters=None)#
Computes metric value.
- Parameters
dp_outputs (Dict[str, pyspark.sql.DataFrame]) –
baseline_outputs (Dict[str, pyspark.sql.DataFrame]) –
unprotected_inputs (Optional[Dict[str, pyspark.sql.DataFrame]]) –
program_parameters (Optional[Dict[str, Any]]) –
- property baselines#
Returns the baselines used for the metric.
- __call__(dp_outputs, baseline_outputs, unprotected_inputs=None, program_parameters=None)#
Computes the given metric on the given DP and baseline outputs.
- Parameters
dp_outputs (Dict[str, pyspark.sql.DataFrame]) – The differentially private outputs of the program.
baseline_outputs (Dict[str, Dict[str, pyspark.sql.DataFrame]]) – The outputs of the baseline programs.
unprotected_inputs (Optional[Dict[str, pyspark.sql.DataFrame]]) – Optional public dataframes used in error computation.
program_parameters (Optional[Dict[str, Any]]) – Optional program specific parameters used in error computation.
- Return type
- class MedianRelativeError(output, measure_column, join_columns, *, name=None, description=None, baselines=None)#
Bases:
QuantileRelativeError
Computes the median relative error.
Equivalent to
QuantileRelativeError
withquantile = 0.5
.Note
This is only available on a paid version of Tumult Analytics. If you would like to hear more, please contact us at info@tmlt.io.
Example
>>> dp_df = spark.createDataFrame( ... pd.DataFrame( ... { ... "A": ["a1", "a2", "a3"], ... "X": [50, 110, 100] ... } ... ) ... ) >>> dp_outputs = {"O": dp_df} >>> baseline_df = spark.createDataFrame( ... pd.DataFrame( ... { ... "A": ["a1", "a2", "a3"], ... "X": [100, 100, 100] ... } ... ) ... ) >>> baseline_outputs = {"O": baseline_df}
>>> metric = MedianRelativeError( ... output="O", ... measure_column="X", ... join_columns=["A"] ... ) >>> metric.quantile 0.5 >>> metric.join_columns ['A'] >>> result = metric.compute_for_baseline(dp_outputs, baseline_outputs) >>> result 0.1 >>> metric.format(result) '0.10'
Methods# Returns the quantile.
Returns name of the column to compute the quantile of relative error over.
Returns a string representation of this object.
Computes quantile relative error value from combined dataframe.
Returns the name of the run output or view name.
Returns the name of the join columns.
Check if the join keys uniquely identify rows in the joined DataFrame.
Computes metric value.
Returns the name of the metric.
Returns the description of the metric.
Returns the baselines used for the metric.
Computes the given metric on the given DP and baseline outputs.
- Parameters
- __init__(output, measure_column, join_columns, *, name=None, description=None, baselines=None)#
Constructor.
- Parameters
measure_column (
str
str
) – The column to compute the median of relative error over.name (
str
|None
Optional
[str
] (default:None
)) – A name for the metric.description (
str
|None
Optional
[str
] (default:None
)) – A description of the metric.baselines (
List
[str
] |None
Optional
[List
[str
]] (default:None
)) – The name of the baseline program(s) used for the error report. If None, use all baselines specified as custom baseline and baseline options on tuner class. If no baselines are specified on tuner class, use default baseline. If a string, use only that baseline. If a list, use only those baselines.
- property measure_column#
Returns name of the column to compute the quantile of relative error over.
- Return type
- format(value)#
Returns a string representation of this object.
- compute_on_joined_output(joined_output)#
Computes quantile relative error value from combined dataframe.
- Parameters
joined_output (pyspark.sql.DataFrame) –
- check_join_key_uniqueness(joined_output)#
Check if the join keys uniquely identify rows in the joined DataFrame.
- Parameters
joined_output (pyspark.sql.DataFrame) –
- compute_for_baseline(dp_outputs, baseline_outputs, unprotected_inputs=None, program_parameters=None)#
Computes metric value.
- Parameters
dp_outputs (Dict[str, pyspark.sql.DataFrame]) –
baseline_outputs (Dict[str, pyspark.sql.DataFrame]) –
unprotected_inputs (Optional[Dict[str, pyspark.sql.DataFrame]]) –
program_parameters (Optional[Dict[str, Any]]) –
- property baselines#
Returns the baselines used for the metric.
- __call__(dp_outputs, baseline_outputs, unprotected_inputs=None, program_parameters=None)#
Computes the given metric on the given DP and baseline outputs.
- Parameters
dp_outputs (Dict[str, pyspark.sql.DataFrame]) – The differentially private outputs of the program.
baseline_outputs (Dict[str, Dict[str, pyspark.sql.DataFrame]]) – The outputs of the baseline programs.
unprotected_inputs (Optional[Dict[str, pyspark.sql.DataFrame]]) – Optional public dataframes used in error computation.
program_parameters (Optional[Dict[str, Any]]) – Optional program specific parameters used in error computation.
- Return type
- class HighRelativeErrorFraction(output, relative_error_threshold, measure_column, join_columns, *, name=None, description=None, baselines=None)#
Bases:
tmlt.analytics.metrics._base.JoinedOutputMetric
Computes the fraction of groups with relative error above a threshold.
Note
This is only available on a paid version of Tumult Analytics. If you would like to hear more, please contact us at info@tmlt.io.
How it works:
The algorithm takes as input two tables: one representing the differentially private (DP) output and the other representing the baseline output.
DP Table (dp): This table contains the output data generated by a differentially private mechanism.
Baseline Table (baseline): This table contains the output data generated by a non-private or baseline mechanism. It serves as a reference point for comparison with the DP output.
The algorithm includes error handling to ensure the validity of the input data. It checks for the existence and numeric type of the
measure_column
.The algorithm performs an inner join between the DP and baseline tables based on
join_columns
to produce the combined dataframe. This join must be one-to-one, with each row in the DP table matches exactly one row in the baseline table, and vice versa. This ensures that there is a direct correspondence between the DP and baseline outputs for each entity, allowing for accurate comparison.After performing the join, the algorithm computes the relative error for each group. Relative error is calculated as the absolute difference between the corresponding values in the DP and baseline outputs to the value in the baseline using the formula \(abs(dp - baseline) / baseline\). If baseline is zero, it returns infinity for non-zero differences (\(∞\)) and zero for zero differences (\(0\)).
Next, the algorithm filters the relative error dataframe to include only those data points where the relative error exceeds a specified threshold (
relative_error_threshold
). This threshold represents the maximum allowable relative error for a data point to be considered within acceptable bounds.Finally, the algorithm then calculates the high relative error fraction by dividing the count of data points with relative errors exceeding the threshold by the total count of data points in the dataframe.
The algorithm handles cases where the resulting dataframe after relative error computation is empty (i.e., it contains no data points), returning a NaN (not a number) value in such scenarios.
Note
Provided algorithm assumes a one-to-one join scenario.
Nulls in the measure columns are dropped because the metric cannot handle null values, and the absolute error computation requires valid numeric values in both columns.
Example
>>> dp_df = spark.createDataFrame( ... pd.DataFrame( ... { ... "A": ["a1", "a2", "a3"], ... "X": [50, 110, 100] ... } ... ) ... ) >>> dp_outputs = {"O": dp_df} >>> baseline_df = spark.createDataFrame( ... pd.DataFrame( ... { ... "A": ["a1", "a2", "a3"], ... "X": [100, 100, 100] ... } ... ) ... ) >>> baseline_outputs = {"O": baseline_df}
>>> metric = HighRelativeErrorFraction( ... output="O", ... measure_column="X", ... relative_error_threshold=0.25, ... join_columns=["A"] ... ) >>> metric.relative_error_threshold 0.25 >>> metric.join_columns ['A'] >>> result = metric.compute_for_baseline(dp_outputs, baseline_outputs) >>> result 0.3333333333333333 >>> metric.format(result) '0.33'
Methods# Returns the relative error threshold.
Returns name of the column to compute the relative error over.
Returns a string representation of this object.
Computes high relative error fraction from combined dataframe.
Returns the name of the run output or view name.
Returns the name of the join columns.
Check if the join keys uniquely identify rows in the joined DataFrame.
Computes metric value.
Returns the name of the metric.
Returns the description of the metric.
Returns the baselines used for the metric.
Computes the given metric on the given DP and baseline outputs.
- Parameters
- __init__(output, relative_error_threshold, measure_column, join_columns, *, name=None, description=None, baselines=None)#
Constructor.
- Parameters
relative_error_threshold (
float
float
) – The threshold for the relative error.measure_column (
str
str
) – The column to compute relative error over.name (
str
|None
Optional
[str
] (default:None
)) – A name for the metric.description (
str
|None
Optional
[str
] (default:None
)) – A description of the metric.baselines (
str
|None
Optional
[str
] (default:None
)) – The name of the baseline program(s) used for the error report. If None, use all baselines specified as custom baseline and baseline options on tuner class. If no baselines are specified on tuner class, use default baseline. If a string, use only that baseline. If a list, use only those baselines.
- property measure_column#
Returns name of the column to compute the relative error over.
- Return type
- format(value)#
Returns a string representation of this object.
- compute_on_joined_output(joined_output)#
Computes high relative error fraction from combined dataframe.
- Parameters
joined_output (pyspark.sql.DataFrame) –
- check_join_key_uniqueness(joined_output)#
Check if the join keys uniquely identify rows in the joined DataFrame.
- Parameters
joined_output (pyspark.sql.DataFrame) –
- compute_for_baseline(dp_outputs, baseline_outputs, unprotected_inputs=None, program_parameters=None)#
Computes metric value.
- Parameters
dp_outputs (Dict[str, pyspark.sql.DataFrame]) –
baseline_outputs (Dict[str, pyspark.sql.DataFrame]) –
unprotected_inputs (Optional[Dict[str, pyspark.sql.DataFrame]]) –
program_parameters (Optional[Dict[str, Any]]) –
- property baselines#
Returns the baselines used for the metric.
- __call__(dp_outputs, baseline_outputs, unprotected_inputs=None, program_parameters=None)#
Computes the given metric on the given DP and baseline outputs.
- Parameters
dp_outputs (Dict[str, pyspark.sql.DataFrame]) – The differentially private outputs of the program.
baseline_outputs (Dict[str, Dict[str, pyspark.sql.DataFrame]]) – The outputs of the baseline programs.
unprotected_inputs (Optional[Dict[str, pyspark.sql.DataFrame]]) – Optional public dataframes used in error computation.
program_parameters (Optional[Dict[str, Any]]) – Optional program specific parameters used in error computation.
- Return type