_tuner#
Interface for tuning SessionProgram
s.
Functions#
Decorator to define a custom baseline method for |
- baseline(name)#
Decorator to define a custom baseline method for
SessionProgramTuner
.To use the default baseline in addition to this custom baseline, you can separately specify baseline_options.
>>> from tmlt.analytics.session import Session
>>> class Program(SessionProgram): ... class ProtectedInputs: ... protected_df: DataFrame ... class UnprotectedInputs: ... unprotected_df: DataFrame ... class Outputs: ... output_df: DataFrame ... def session_interaction(self, session: Session): ... ... >>> class Tuner(SessionProgramTuner, program=Program): ... @baseline("custom_baseline") ... def custom_baseline( ... self, ... protected_inputs: Dict[str, DataFrame], ... ) -> Dict[str, DataFrame]: ... ... ... @baseline("another_custom_baseline") ... def another_custom_baseline( ... self, ... protected_inputs: Dict[str, DataFrame], ... unprotected_inputs: Dict[str, DataFrame], ... ) -> Dict[str, DataFrame]: ... # If the program has unprotected inputs, the custom baseline method ... # can take them as an argument. ... ... ... baseline_options = { ... "default": NoPrivacySession.Options() ... } # This is required to keep the default baseline
- Parameters
name (str) –
Classes#
Named placeholder for a single input to a |
|
A private dataframe and its protected change. |
|
Add tunable private and public dataframe support to a builder. |
|
Add support for tunable privacy budgets to a builder. |
|
Abstract builder for a SessionProgramTuner. |
|
Base class for defining an object to tune inputs to a |
- class Tunable#
Named placeholder for a single input to a
SessionProgramTunerBuilder
.Note
This is only available on a paid version of Tumult Analytics. If you would like to hear more, please contact us at info@tmlt.io.
When a
Tunable
is passed to aSessionProgramTunerBuilder
, it is replaced with the concrete values for the tunable parameter when buildingSessionProgram
s inside of methods likeerror_report()
andmulti_error_report()
.- name :str#
Name of the tunable parameter.
- class TunablePrivateDataFrame#
Bases:
NamedTuple
A private dataframe and its protected change.
One or both of the dataframe and protected_change can be a
Tunable
.
- class TunableDataFrameMixin#
Bases:
tmlt.analytics._base_builder.DataFrameMixin
Add tunable private and public dataframe support to a builder.
- __init__()#
Constructor.
- with_private_dataframe(source_id, dataframe, protected_change)#
Add a tunable private dataframe to the builder.
- Parameters
source_id (str) –
dataframe (Union[pyspark.sql.DataFrame, Tunable]) –
protected_change (Union[tmlt.analytics.protected_change.ProtectedChange, Tunable]) –
- with_public_dataframe(source_id, dataframe)#
Add a tunable public dataframe to the builder.
- Parameters
source_id (str) –
dataframe (Union[Tunable, pyspark.sql.DataFrame]) –
- with_id_space(id_space)#
Adds an identifier space.
This defines a space of identifiers that map 1-to-1 to the identifiers being protected by a table with the
AddRowsWithID
protected change. Any table with such a protected change must be a member of some identifier space.- Parameters
id_space (str) –
- class TunablePrivacyBudgetMixin#
Bases:
tmlt.analytics._base_builder.PrivacyBudgetMixin
Add support for tunable privacy budgets to a builder.
- __init__()#
Constructor.
- with_privacy_budget(privacy_budget)#
Set the privacy budget for the object being built.
- Parameters
privacy_budget (Union[tmlt.analytics.privacy_budget.PrivacyBudget, Tunable]) –
- class SessionProgramTunerBuilder#
Bases:
tmlt.analytics._base_builder.BaseBuilder
,TunableDataFrameMixin
,tmlt.analytics._base_builder.ParameterMixin
,TunablePrivacyBudgetMixin
,abc.ABC
Abstract builder for a SessionProgramTuner.
- __init__()#
Constructor.
- abstract build()#
Constructs the type that this builder builds.
- Return type
Any
- with_private_dataframe(source_id, dataframe, protected_change)#
Add a tunable private dataframe to the builder.
- Parameters
source_id (str) –
dataframe (Union[pyspark.sql.DataFrame, Tunable]) –
protected_change (Union[tmlt.analytics.protected_change.ProtectedChange, Tunable]) –
- with_public_dataframe(source_id, dataframe)#
Add a tunable public dataframe to the builder.
- Parameters
source_id (str) –
dataframe (Union[Tunable, pyspark.sql.DataFrame]) –
- with_id_space(id_space)#
Adds an identifier space.
This defines a space of identifiers that map 1-to-1 to the identifiers being protected by a table with the
AddRowsWithID
protected change. Any table with such a protected change must be a member of some identifier space.- Parameters
id_space (str) –
- with_privacy_budget(privacy_budget)#
Set the privacy budget for the object being built.
- Parameters
privacy_budget (Union[tmlt.analytics.privacy_budget.PrivacyBudget, Tunable]) –
- class SessionProgramTuner(builder)#
Base class for defining an object to tune inputs to a
SessionProgram
.Note
This is only available on a paid version of Tumult Analytics. If you would like to hear more, please contact us at info@tmlt.io.
SessionProgramTuners should not be directly constructed. Instead, users should create a subclass of
SessionProgramTuner
, then construct theirSessionProgramTuner
using the auto-generatedBuilder
attribute of the subclass.- Parameters
builder (SessionProgramTunerBuilder) –
- baseline_options :Optional[Union[Dict[str, tmlt.analytics.no_privacy_session.NoPrivacySession.Options], tmlt.analytics.no_privacy_session.NoPrivacySession.Options]]#
Configuration for how baseline outputs are computed.
By default, a SessionProgramTuner computes both the DP outputs and the baseline outputs for a SessionProgram to compute metrics. The baseline outputs are computed by calling the
session_interaction()
method with aNoPrivacySession
. Thebaseline_options
attribute allows you to override the default options for theNoPrivacySession
used to compute the baseline. You can also specify multiple configurations to compute the baselines with different options. When multiple baseline configurations are specified, the metrics are computed with respect to each of the baseline configurations (unless specified otherwise in the metric definitions).To override the default baseline options (see
Options
), you can set this to anOptions
object.If you want to specify multiple baseline configurations, you can set this to a dictionary mapping baseline names to
Options
.
- metrics :Optional[List[tmlt.analytics.metrics.Metric]]#
A list of metrics to compute in each
error_report
.
- Builder :Type[SessionProgramTunerBuilder]#
The builder for a specific subclass of SessionProgramTuner.
- program :Type[tmlt.analytics.program.SessionProgram]#
A subclass of
SessionProgram
to be tuned.
- __init__(builder)#
Constructor.
Warning
This constructor is not intended to be used directly. Use the automatically generated builder instead. It can be accessed using the
Builder
attribute of the subclass.- Parameters
builder (tmlt.analytics.tuner._tuner.SessionProgramTunerBuilder) –
- property tunables#
Returns a list of tunable inputs associated with this tuner.
- Return type
List[Tunable]
- outputs(tunable_values=None)#
Computes all outputs for a single run.
- Parameters
tunable_values (Optional[Dict[str, Any]]) – A dictionary mapping names of
Tunable
s to concrete values to use for this run. EveryTunable
used in building this tuner must have a value in this dictionary. This can be None only if noTunable
s were used.- Return type
Tuple[Dict[str, pyspark.sql.DataFrame], Dict[str, Dict[str, pyspark.sql.DataFrame]]]
- error_report(tunable_values=None)#
Computes DP outputs, baseline outputs, and metrics for a single run.