_license#
Models for the license object.
Classes#
Issuer object. |
|
License type object. |
|
License object. |
- class Issuer(**data)#
Bases:
pydantic.BaseModel
Issuer object.
Methods# Get the computed fields of this model instance.
Get extra fields set during validation.
Returns the set of fields that have been explicitly set on this model instance.
Creates a new instance of the Model class with validated data.
Usage docs: https://docs.pydantic.dev/2.5/concepts/serialization/#model_copy
Usage docs: https://docs.pydantic.dev/2.5/concepts/serialization/#modelmodel_dump
Usage docs: https://docs.pydantic.dev/2.5/concepts/serialization/#modelmodel_dump_json
Generates a JSON schema for a model class.
Compute the class name for parametrizations of generic classes.
Override this method to perform additional initialization after __init__ and model_construct.
Try to rebuild the pydantic-core schema for the model.
Validate a pydantic model instance.
Usage docs: https://docs.pydantic.dev/2.5/concepts/json/#json-parsing
Validate the given object contains string data against the Pydantic model.
Hook into generating the model’s CoreSchema.
Hook into generating the model’s JSON schema.
This is intended to behave just like __init_subclass__, but is called by ModelMetaclass
Returns a shallow copy of the model.
Returns a deep copy of the model.
Implement delattr(self, name).
Return self==value.
So dict(model) works.
Returns a copy of the model.
- Parameters
data (Any) –
- __init__(**data)#
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
__init__ uses __pydantic_self__ instead of the more common self for the first arg to allow self as a field name.
- Parameters
data (Any) –
- Return type
None
- property model_computed_fields#
Get the computed fields of this model instance.
- property model_extra#
Get extra fields set during validation.
- property model_fields_set#
Returns the set of fields that have been explicitly set on this model instance.
- classmethod model_construct(_fields_set=None, **values)#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- model_copy(*, update=None, deep=False)#
Usage docs: https://docs.pydantic.dev/2.5/concepts/serialization/#model_copy
Returns a copy of the model.
- model_dump(*, mode='python', include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True)#
Usage docs: https://docs.pydantic.dev/2.5/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters
mode (Literal['json', 'python'] | str) – The mode in which to_python should run. If mode is ‘json’, the dictionary will only contain JSON serializable types. If mode is ‘python’, the dictionary may contain any Python objects.
include (IncEx) – A list of fields to include in the output.
exclude (IncEx) – A list of fields to exclude from the output.
by_alias (bool) – Whether to use the field’s alias in the dictionary key if defined.
exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.
exclude_defaults (bool) – Whether to exclude fields that are set to their default value from the output.
exclude_none (bool) – Whether to exclude fields that have a value of None from the output.
round_trip (bool) – Whether to enable serialization and deserialization round-trip support.
warnings (bool) – Whether to log warnings when invalid fields are encountered.
- Returns
A dictionary representation of the model.
- Return type
- model_dump_json(*, indent=None, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True)#
Usage docs: https://docs.pydantic.dev/2.5/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Parameters
indent (int | None) – Indentation to use in the JSON output. If None is passed, the output will be compact.
include (IncEx) – Field(s) to include in the JSON output. Can take either a string or set of strings.
exclude (IncEx) – Field(s) to exclude from the JSON output. Can take either a string or set of strings.
by_alias (bool) – Whether to serialize using field aliases.
exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.
exclude_defaults (bool) – Whether to exclude fields that have the default value.
exclude_none (bool) – Whether to exclude fields that have a value of None.
round_trip (bool) – Whether to use serialization/deserialization between JSON and class instance.
warnings (bool) – Whether to show any warnings that occurred during serialization.
- Returns
A JSON string representation of the model.
- Return type
- classmethod model_json_schema(by_alias=True, ref_template=DEFAULT_REF_TEMPLATE, schema_generator=GenerateJsonSchema, mode='validation')#
Generates a JSON schema for a model class.
- Parameters
by_alias (bool) – Whether to use attribute aliases or not.
ref_template (str) – The reference template.
schema_generator (type[pydantic.json_schema.GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications
mode (pydantic.json_schema.JsonSchemaMode) – The mode in which to generate the schema.
- Returns
The JSON schema for the given model class.
- Return type
- classmethod model_parametrized_name(params)#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Parameters
params (tuple[type[Any], Ellipsis]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns
String representing the new class where params are passed to cls as type variables.
- Raises
TypeError – Raised when trying to generate concrete names for non-generic models.
- Return type
- model_post_init(__context)#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- Parameters
__context (Any) –
- Return type
None
- classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Parameters
force (bool) – Whether to force the rebuilding of the model schema, defaults to False.
raise_errors (bool) – Whether to raise errors, defaults to True.
_parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.
_types_namespace (dict[str, Any] | None) – The types namespace, defaults to None.
- Returns
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- Return type
bool | None
- classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)#
Validate a pydantic model instance.
- Parameters
- Raises
ValidationError – If the object could not be validated.
- Returns
The validated model instance.
- Return type
Model
- classmethod model_validate_json(json_data, *, strict=None, context=None)#
Usage docs: https://docs.pydantic.dev/2.5/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Parameters
- Returns
The validated Pydantic model.
- Raises
ValueError – If json_data is not a JSON string.
- Return type
Model
- classmethod model_validate_strings(obj, *, strict=None, context=None)#
Validate the given object contains string data against the Pydantic model.
- classmethod __get_pydantic_core_schema__(__source, __handler)#
Hook into generating the model’s CoreSchema.
- Parameters
__source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.
__handler (pydantic.annotated_handlers.GetCoreSchemaHandler) – Call into Pydantic’s internal JSON schema generation. A callable that calls into Pydantic’s internal CoreSchema generation logic.
- Returns
A pydantic-core CoreSchema.
- Return type
pydantic_core.CoreSchema
- classmethod __get_pydantic_json_schema__(__core_schema, __handler)#
Hook into generating the model’s JSON schema.
- Parameters
__core_schema (pydantic_core.CoreSchema) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({‘type’: ‘nullable’, ‘schema’: current_schema}), or just call the handler with the original schema.
__handler (pydantic.annotated_handlers.GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.
- Returns
A JSON schema, as a Python object.
- Return type
pydantic.json_schema.JsonSchemaValue
- classmethod __pydantic_init_subclass__(**kwargs)#
This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.
This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.
This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.
- Parameters
**kwargs – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.
kwargs (Any) –
- Return type
None
- __copy__()#
Returns a shallow copy of the model.
- Return type
Model
- __deepcopy__(memo=None)#
Returns a deep copy of the model.
- __iter__()#
So dict(model) works.
- Return type
TupleGenerator
- copy(*, include=None, exclude=None, update=None, deep=False)#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Parameters
include (AbstractSetIntStr | MappingIntStrAny | None) – Optional set or mapping specifying which fields to include in the copied model.
exclude (AbstractSetIntStr | MappingIntStrAny | None) – Optional set or mapping specifying which fields to exclude in the copied model.
update (Dict[str, Any] | None) – Optional dictionary of field-value pairs to override field values in the copied model.
deep (bool) – If True, the values of fields that are Pydantic models will be deep copied.
- Returns
A copy of the model with included, excluded and updated fields as specified.
- Return type
Model
- class LicenseType(**data)#
Bases:
pydantic.BaseModel
License type object.
Methods# Get the computed fields of this model instance.
Get extra fields set during validation.
Returns the set of fields that have been explicitly set on this model instance.
Creates a new instance of the Model class with validated data.
Usage docs: https://docs.pydantic.dev/2.5/concepts/serialization/#model_copy
Usage docs: https://docs.pydantic.dev/2.5/concepts/serialization/#modelmodel_dump
Usage docs: https://docs.pydantic.dev/2.5/concepts/serialization/#modelmodel_dump_json
Generates a JSON schema for a model class.
Compute the class name for parametrizations of generic classes.
Override this method to perform additional initialization after __init__ and model_construct.
Try to rebuild the pydantic-core schema for the model.
Validate a pydantic model instance.
Usage docs: https://docs.pydantic.dev/2.5/concepts/json/#json-parsing
Validate the given object contains string data against the Pydantic model.
Hook into generating the model’s CoreSchema.
Hook into generating the model’s JSON schema.
This is intended to behave just like __init_subclass__, but is called by ModelMetaclass
Returns a shallow copy of the model.
Returns a deep copy of the model.
Implement delattr(self, name).
Return self==value.
So dict(model) works.
Returns a copy of the model.
- Parameters
data (Any) –
- __init__(**data)#
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
__init__ uses __pydantic_self__ instead of the more common self for the first arg to allow self as a field name.
- Parameters
data (Any) –
- Return type
None
- property model_computed_fields#
Get the computed fields of this model instance.
- property model_extra#
Get extra fields set during validation.
- property model_fields_set#
Returns the set of fields that have been explicitly set on this model instance.
- classmethod model_construct(_fields_set=None, **values)#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- model_copy(*, update=None, deep=False)#
Usage docs: https://docs.pydantic.dev/2.5/concepts/serialization/#model_copy
Returns a copy of the model.
- model_dump(*, mode='python', include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True)#
Usage docs: https://docs.pydantic.dev/2.5/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters
mode (Literal['json', 'python'] | str) – The mode in which to_python should run. If mode is ‘json’, the dictionary will only contain JSON serializable types. If mode is ‘python’, the dictionary may contain any Python objects.
include (IncEx) – A list of fields to include in the output.
exclude (IncEx) – A list of fields to exclude from the output.
by_alias (bool) – Whether to use the field’s alias in the dictionary key if defined.
exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.
exclude_defaults (bool) – Whether to exclude fields that are set to their default value from the output.
exclude_none (bool) – Whether to exclude fields that have a value of None from the output.
round_trip (bool) – Whether to enable serialization and deserialization round-trip support.
warnings (bool) – Whether to log warnings when invalid fields are encountered.
- Returns
A dictionary representation of the model.
- Return type
- model_dump_json(*, indent=None, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True)#
Usage docs: https://docs.pydantic.dev/2.5/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Parameters
indent (int | None) – Indentation to use in the JSON output. If None is passed, the output will be compact.
include (IncEx) – Field(s) to include in the JSON output. Can take either a string or set of strings.
exclude (IncEx) – Field(s) to exclude from the JSON output. Can take either a string or set of strings.
by_alias (bool) – Whether to serialize using field aliases.
exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.
exclude_defaults (bool) – Whether to exclude fields that have the default value.
exclude_none (bool) – Whether to exclude fields that have a value of None.
round_trip (bool) – Whether to use serialization/deserialization between JSON and class instance.
warnings (bool) – Whether to show any warnings that occurred during serialization.
- Returns
A JSON string representation of the model.
- Return type
- classmethod model_json_schema(by_alias=True, ref_template=DEFAULT_REF_TEMPLATE, schema_generator=GenerateJsonSchema, mode='validation')#
Generates a JSON schema for a model class.
- Parameters
by_alias (bool) – Whether to use attribute aliases or not.
ref_template (str) – The reference template.
schema_generator (type[pydantic.json_schema.GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications
mode (pydantic.json_schema.JsonSchemaMode) – The mode in which to generate the schema.
- Returns
The JSON schema for the given model class.
- Return type
- classmethod model_parametrized_name(params)#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Parameters
params (tuple[type[Any], Ellipsis]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns
String representing the new class where params are passed to cls as type variables.
- Raises
TypeError – Raised when trying to generate concrete names for non-generic models.
- Return type
- model_post_init(__context)#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- Parameters
__context (Any) –
- Return type
None
- classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Parameters
force (bool) – Whether to force the rebuilding of the model schema, defaults to False.
raise_errors (bool) – Whether to raise errors, defaults to True.
_parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.
_types_namespace (dict[str, Any] | None) – The types namespace, defaults to None.
- Returns
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- Return type
bool | None
- classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)#
Validate a pydantic model instance.
- Parameters
- Raises
ValidationError – If the object could not be validated.
- Returns
The validated model instance.
- Return type
Model
- classmethod model_validate_json(json_data, *, strict=None, context=None)#
Usage docs: https://docs.pydantic.dev/2.5/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Parameters
- Returns
The validated Pydantic model.
- Raises
ValueError – If json_data is not a JSON string.
- Return type
Model
- classmethod model_validate_strings(obj, *, strict=None, context=None)#
Validate the given object contains string data against the Pydantic model.
- classmethod __get_pydantic_core_schema__(__source, __handler)#
Hook into generating the model’s CoreSchema.
- Parameters
__source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.
__handler (pydantic.annotated_handlers.GetCoreSchemaHandler) – Call into Pydantic’s internal JSON schema generation. A callable that calls into Pydantic’s internal CoreSchema generation logic.
- Returns
A pydantic-core CoreSchema.
- Return type
pydantic_core.CoreSchema
- classmethod __get_pydantic_json_schema__(__core_schema, __handler)#
Hook into generating the model’s JSON schema.
- Parameters
__core_schema (pydantic_core.CoreSchema) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({‘type’: ‘nullable’, ‘schema’: current_schema}), or just call the handler with the original schema.
__handler (pydantic.annotated_handlers.GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.
- Returns
A JSON schema, as a Python object.
- Return type
pydantic.json_schema.JsonSchemaValue
- classmethod __pydantic_init_subclass__(**kwargs)#
This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.
This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.
This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.
- Parameters
**kwargs – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.
kwargs (Any) –
- Return type
None
- __copy__()#
Returns a shallow copy of the model.
- Return type
Model
- __deepcopy__(memo=None)#
Returns a deep copy of the model.
- __iter__()#
So dict(model) works.
- Return type
TupleGenerator
- copy(*, include=None, exclude=None, update=None, deep=False)#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Parameters
include (AbstractSetIntStr | MappingIntStrAny | None) – Optional set or mapping specifying which fields to include in the copied model.
exclude (AbstractSetIntStr | MappingIntStrAny | None) – Optional set or mapping specifying which fields to exclude in the copied model.
update (Dict[str, Any] | None) – Optional dictionary of field-value pairs to override field values in the copied model.
deep (bool) – If True, the values of fields that are Pydantic models will be deep copied.
- Returns
A copy of the model with included, excluded and updated fields as specified.
- Return type
Model
- class License(**data)#
Bases:
pydantic.BaseModel
License object.
Methods# Generates a private key for the license.
Generates a public key for the license.
Generates a signature for the license.
Validates the license in TUMULT_ANALYTICS_PRO_LICENSE.
Verifies the signature of the license.
Get the computed fields of this model instance.
Get extra fields set during validation.
Returns the set of fields that have been explicitly set on this model instance.
Creates a new instance of the Model class with validated data.
Usage docs: https://docs.pydantic.dev/2.5/concepts/serialization/#model_copy
Usage docs: https://docs.pydantic.dev/2.5/concepts/serialization/#modelmodel_dump
Usage docs: https://docs.pydantic.dev/2.5/concepts/serialization/#modelmodel_dump_json
Generates a JSON schema for a model class.
Compute the class name for parametrizations of generic classes.
Override this method to perform additional initialization after __init__ and model_construct.
Try to rebuild the pydantic-core schema for the model.
Validate a pydantic model instance.
Usage docs: https://docs.pydantic.dev/2.5/concepts/json/#json-parsing
Validate the given object contains string data against the Pydantic model.
Hook into generating the model’s CoreSchema.
Hook into generating the model’s JSON schema.
This is intended to behave just like __init_subclass__, but is called by ModelMetaclass
Returns a shallow copy of the model.
Returns a deep copy of the model.
Implement delattr(self, name).
Return self==value.
So dict(model) works.
Returns a copy of the model.
- Parameters
data (Any) –
- __init__(**data)#
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
__init__ uses __pydantic_self__ instead of the more common self for the first arg to allow self as a field name.
- Parameters
data (Any) –
- Return type
None
- static generate_public_key(private_key)#
Generates a public key for the license.
- generate_signature(private_key)#
Generates a signature for the license.
- Parameters
private_key (str) –
- static check_license()#
Validates the license in TUMULT_ANALYTICS_PRO_LICENSE.
- verify_signature()#
Verifies the signature of the license.
- property model_computed_fields#
Get the computed fields of this model instance.
- property model_extra#
Get extra fields set during validation.
- property model_fields_set#
Returns the set of fields that have been explicitly set on this model instance.
- classmethod model_construct(_fields_set=None, **values)#
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- model_copy(*, update=None, deep=False)#
Usage docs: https://docs.pydantic.dev/2.5/concepts/serialization/#model_copy
Returns a copy of the model.
- model_dump(*, mode='python', include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True)#
Usage docs: https://docs.pydantic.dev/2.5/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters
mode (Literal['json', 'python'] | str) – The mode in which to_python should run. If mode is ‘json’, the dictionary will only contain JSON serializable types. If mode is ‘python’, the dictionary may contain any Python objects.
include (IncEx) – A list of fields to include in the output.
exclude (IncEx) – A list of fields to exclude from the output.
by_alias (bool) – Whether to use the field’s alias in the dictionary key if defined.
exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.
exclude_defaults (bool) – Whether to exclude fields that are set to their default value from the output.
exclude_none (bool) – Whether to exclude fields that have a value of None from the output.
round_trip (bool) – Whether to enable serialization and deserialization round-trip support.
warnings (bool) – Whether to log warnings when invalid fields are encountered.
- Returns
A dictionary representation of the model.
- Return type
- model_dump_json(*, indent=None, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True)#
Usage docs: https://docs.pydantic.dev/2.5/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s to_json method.
- Parameters
indent (int | None) – Indentation to use in the JSON output. If None is passed, the output will be compact.
include (IncEx) – Field(s) to include in the JSON output. Can take either a string or set of strings.
exclude (IncEx) – Field(s) to exclude from the JSON output. Can take either a string or set of strings.
by_alias (bool) – Whether to serialize using field aliases.
exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.
exclude_defaults (bool) – Whether to exclude fields that have the default value.
exclude_none (bool) – Whether to exclude fields that have a value of None.
round_trip (bool) – Whether to use serialization/deserialization between JSON and class instance.
warnings (bool) – Whether to show any warnings that occurred during serialization.
- Returns
A JSON string representation of the model.
- Return type
- classmethod model_json_schema(by_alias=True, ref_template=DEFAULT_REF_TEMPLATE, schema_generator=GenerateJsonSchema, mode='validation')#
Generates a JSON schema for a model class.
- Parameters
by_alias (bool) – Whether to use attribute aliases or not.
ref_template (str) – The reference template.
schema_generator (type[pydantic.json_schema.GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications
mode (pydantic.json_schema.JsonSchemaMode) – The mode in which to generate the schema.
- Returns
The JSON schema for the given model class.
- Return type
- classmethod model_parametrized_name(params)#
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Parameters
params (tuple[type[Any], Ellipsis]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns
String representing the new class where params are passed to cls as type variables.
- Raises
TypeError – Raised when trying to generate concrete names for non-generic models.
- Return type
- model_post_init(__context)#
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- Parameters
__context (Any) –
- Return type
None
- classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)#
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Parameters
force (bool) – Whether to force the rebuilding of the model schema, defaults to False.
raise_errors (bool) – Whether to raise errors, defaults to True.
_parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.
_types_namespace (dict[str, Any] | None) – The types namespace, defaults to None.
- Returns
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- Return type
bool | None
- classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)#
Validate a pydantic model instance.
- Parameters
- Raises
ValidationError – If the object could not be validated.
- Returns
The validated model instance.
- Return type
Model
- classmethod model_validate_json(json_data, *, strict=None, context=None)#
Usage docs: https://docs.pydantic.dev/2.5/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Parameters
- Returns
The validated Pydantic model.
- Raises
ValueError – If json_data is not a JSON string.
- Return type
Model
- classmethod model_validate_strings(obj, *, strict=None, context=None)#
Validate the given object contains string data against the Pydantic model.
- classmethod __get_pydantic_core_schema__(__source, __handler)#
Hook into generating the model’s CoreSchema.
- Parameters
__source (type[BaseModel]) – The class we are generating a schema for. This will generally be the same as the cls argument if this is a classmethod.
__handler (pydantic.annotated_handlers.GetCoreSchemaHandler) – Call into Pydantic’s internal JSON schema generation. A callable that calls into Pydantic’s internal CoreSchema generation logic.
- Returns
A pydantic-core CoreSchema.
- Return type
pydantic_core.CoreSchema
- classmethod __get_pydantic_json_schema__(__core_schema, __handler)#
Hook into generating the model’s JSON schema.
- Parameters
__core_schema (pydantic_core.CoreSchema) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({‘type’: ‘nullable’, ‘schema’: current_schema}), or just call the handler with the original schema.
__handler (pydantic.annotated_handlers.GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.
- Returns
A JSON schema, as a Python object.
- Return type
pydantic.json_schema.JsonSchemaValue
- classmethod __pydantic_init_subclass__(**kwargs)#
This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.
This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.
This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.
- Parameters
**kwargs – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.
kwargs (Any) –
- Return type
None
- __copy__()#
Returns a shallow copy of the model.
- Return type
Model
- __deepcopy__(memo=None)#
Returns a deep copy of the model.
- __iter__()#
So dict(model) works.
- Return type
TupleGenerator
- copy(*, include=None, exclude=None, update=None, deep=False)#
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Parameters
include (AbstractSetIntStr | MappingIntStrAny | None) – Optional set or mapping specifying which fields to include in the copied model.
exclude (AbstractSetIntStr | MappingIntStrAny | None) – Optional set or mapping specifying which fields to exclude in the copied model.
update (Dict[str, Any] | None) – Optional dictionary of field-value pairs to override field values in the copied model.
deep (bool) – If True, the values of fields that are Pydantic models will be deep copied.
- Returns
A copy of the model with included, excluded and updated fields as specified.
- Return type
Model