add_remove_keys#
Transformations that transform dictionaries using AddRemoveKeys
.
Note that several of the transformations in dictionary
also support
AddRemoveKeys
. In particular
The transformations defined in this module are required because
AugmentDictTransformation
is not stable under AddRemoveKeys
for
all transformations.
For example, consider the following example:
>>> # Create transformation
>>> input_domain = SparkDataFrameDomain(
... {
... "A": SparkStringColumnDescriptor(),
... "B": SparkStringColumnDescriptor(),
... }
... )
>>> input_metric = IfGroupedBy("A", SymmetricDifference())
>>> truncate = LimitRowsPerGroup(
... input_domain=input_domain,
... output_metric=SymmetricDifference(),
... grouping_column="A",
... threshold=1,
... )
>>> rename = Rename(
... input_domain=input_domain,
... metric=SymmetricDifference(),
... rename_mapping={"A": "C", "B": "D"},
... )
>>> create_unique_column = AddUniqueColumn(
... input_domain=rename.output_domain,
... column="A",
... )
>>> transformation = truncate | rename | create_unique_column
>>> # Create data
>>> x1 = spark.createDataFrame(
... [["a", "1"], ["b", "2"], ["c", "3"]], ["A", "B"]
... )
>>> x2 = spark.createDataFrame(
... [["b", "2"], ["c", "3"]], ["A", "B"]
... )
>>> print_sdf(x1)
A B
0 a 1
1 b 2
2 c 3
>>> print_sdf(x2)
A B
0 b 2
1 c 3
>>> y1 = transformation(x1)
>>> y2 = transformation(x2)
>>> print_sdf(y1) # Note that the values below are in fact unique (after the 5B226)
C D A
0 a 1 5B2261222C2231222C2231225D
1 b 2 5B2262222C2232222C2231225D
2 c 3 5B2263222C2233222C2231225D
>>> print_sdf(y2)
C D A
0 b 2 5B2262222C2232222C2231225D
1 c 3 5B2263222C2233222C2231225D
>>> # Check stability
>>> input_metric.distance(x1, x2, input_domain)
1
>>> input_metric.distance(y1, y2, transformation.output_domain)
1
>>> # Check stability as if it was Augmented using AugmentDictTransformation
>>> dict_x1 = {"start": x1}
>>> dict_x2 = {"start": x2}
>>> dict_y1 = {"start": x1, "end": y1}
>>> dict_y2 = {"start": x2, "end": y2}
>>> dict_input_domain = DictDomain({"start": input_domain})
>>> dict_input_metric = AddRemoveKeys({"start": "A"})
>>> dict_output_domain = DictDomain(
... {
... "start": input_domain,
... "end": transformation.output_domain
... }
... )
>>> dict_output_metric = AddRemoveKeys({"start": "A", "end": "A"})
>>> # Naively you would expect the stability to be 1, but in this example it is 2
>>> dict_input_metric.distance(dict_x1, dict_x2, dict_input_domain)
1
>>> dict_output_metric.distance(dict_y1, dict_y2, dict_output_domain)
2
Conceptually, what is happening in the example above is that the transformation is changing the meaning of the key column. The column “A” that is in the input data is not the same as the column “A” that is in the output data, so removing one value, “a”, in the input dictionary results in both “a” and “a,1” being removed in the output dictionary.
Classes#
Base class transforming a specified key using an existing transformation. |
|
Applies a |
|
Applies a |
|
Applies a |
|
Applies a |
|
Applies a |
|
Applies a |
|
Applies a |
|
Applies a |
|
Applies a |
|
Applies a |
|
Applies a |
|
Applies a |
|
Applies a |
|
Applies a |
|
Applies a |
|
Applies a |
|
Applies a |
|
Applies a |
|
Applies a |
- class TransformValue(input_domain, input_metric, transformation, key, new_key)#
Bases:
tmlt.core.transformations.base.Transformation
Base class transforming a specified key using an existing transformation.
This class can be subclassed for the purposes of making a claim that a kind of Transformation (like
Filter
) can be applied to a DataFrame and augment the input dictionary with the output without violating the closeness of neighboring dataframes withAddRemoveKeys
.NOTE: This class cannot be instantiated directly.
- Parameters:
input_domain (tmlt.core.domains.collections.DictDomain)
input_metric (tmlt.core.metrics.AddRemoveKeys)
transformation (tmlt.core.transformations.base.Transformation)
key (Any)
new_key (Any)
- property transformation: tmlt.core.transformations.base.Transformation#
Returns the transformation that will be applied to create the new element.
- Return type:
- property key: Any#
Returns the key for the DataFrame to transform.
- Return type:
Any
- property new_key: Any#
Returns the new key for the transformed DataFrame.
- Return type:
Any
- property input_domain: tmlt.core.domains.base.Domain#
Return input domain for the measurement.
- Return type:
- property input_metric: tmlt.core.metrics.Metric#
Distance metric on input domain.
- Return type:
- property output_domain: tmlt.core.domains.base.Domain#
Return input domain for the measurement.
- Return type:
- property output_metric: tmlt.core.metrics.Metric#
Distance metric on input domain.
- Return type:
- __init__(input_domain, input_metric, transformation, key, new_key)#
Constructor.
- Parameters:
input_domain (
DictDomain
) – The Domain of the input dictionary of Spark DataFrames.input_metric (
AddRemoveKeys
) – The input metric for the outer dictionary to dictionary transformation.transformation (
Transformation
) – The DataFrame to DataFrame transformation to apply. Input and output metric must both beIfGroupedBy(column, SymmetricDifference())
using the samecolumn
.key (
Any
) – The key for the DataFrame to transform.new_key (
Any
) – The key to put the transformed output in. The key must not already be in the input domain.
- stability_function(d_in)#
Returns the smallest d_out satisfied by the transformation.
See the privacy and stability tutorial (add link?) for more information.
- Parameters:
d_in (tmlt.core.utils.exact_number.ExactNumberInput) – Distance between inputs under input_metric.
- Raises:
NotImplementedError – If not overridden.
- Return type:
- __call__(data)#
Returns a new dictionary augmented with the transformed DataFrame.
- Parameters:
data (Dict[Any, pyspark.sql.DataFrame])
- Return type:
Dict[Any, pyspark.sql.DataFrame]
- stability_relation(d_in, d_out)#
Returns True only if close inputs produce close outputs.
See the privacy and stability tutorial (add link?) for more information.
- Parameters:
d_in (Any) – Distance between inputs under input_metric.
d_out (Any) – Distance between outputs under output_metric.
- Return type:
- __or__(other: Transformation) Transformation #
- __or__(other: tmlt.core.measurements.base.Measurement) tmlt.core.measurements.base.Measurement
Return this transformation chained with another component.
- class LimitRowsPerGroupValue(input_domain, input_metric, key, new_key, threshold)#
Bases:
TransformValue
Applies a
LimitRowsPerGroup
to the specified key.See
TransformValue
andLimitRowsPerGroup
for more information.- Parameters:
input_domain (tmlt.core.domains.collections.DictDomain)
input_metric (tmlt.core.metrics.AddRemoveKeys)
key (Any)
new_key (Any)
threshold (int)
- property transformation: tmlt.core.transformations.base.Transformation#
Returns the transformation that will be applied to create the new element.
- Return type:
- property key: Any#
Returns the key for the DataFrame to transform.
- Return type:
Any
- property new_key: Any#
Returns the new key for the transformed DataFrame.
- Return type:
Any
- property input_domain: tmlt.core.domains.base.Domain#
Return input domain for the measurement.
- Return type:
- property input_metric: tmlt.core.metrics.Metric#
Distance metric on input domain.
- Return type:
- property output_domain: tmlt.core.domains.base.Domain#
Return input domain for the measurement.
- Return type:
- property output_metric: tmlt.core.metrics.Metric#
Distance metric on input domain.
- Return type:
- __init__(input_domain, input_metric, key, new_key, threshold)#
Constructor.
- Parameters:
input_domain (
DictDomain
) – Domain of input dictionary of Spark DataFrames.input_metric (
AddRemoveKeys
) – Input metric for the outer dictionary to dictionary transformation.key (
Any
) – The key for the DataFrame to transform.new_key (
Any
) – The key to put the transformed output in. The key must not already be in the input domain.threshold (
int
) – The maximum number of rows per group after truncation.
- stability_function(d_in)#
Returns the smallest d_out satisfied by the transformation.
See the privacy and stability tutorial (add link?) for more information.
- Parameters:
d_in (tmlt.core.utils.exact_number.ExactNumberInput) – Distance between inputs under input_metric.
- Raises:
NotImplementedError – If not overridden.
- Return type:
- __call__(data)#
Returns a new dictionary augmented with the transformed DataFrame.
- Parameters:
data (Dict[Any, pyspark.sql.DataFrame])
- Return type:
Dict[Any, pyspark.sql.DataFrame]
- stability_relation(d_in, d_out)#
Returns True only if close inputs produce close outputs.
See the privacy and stability tutorial (add link?) for more information.
- Parameters:
d_in (Any) – Distance between inputs under input_metric.
d_out (Any) – Distance between outputs under output_metric.
- Return type:
- __or__(other: Transformation) Transformation #
- __or__(other: tmlt.core.measurements.base.Measurement) tmlt.core.measurements.base.Measurement
Return this transformation chained with another component.
- class LimitKeysPerGroupValue(input_domain, input_metric, key, new_key, key_column, threshold)#
Bases:
TransformValue
Applies a
LimitKeysPerGroup
to the specified key.See
TransformValue
andLimitKeysPerGroup
for more information.- Parameters:
input_domain (tmlt.core.domains.collections.DictDomain)
input_metric (tmlt.core.metrics.AddRemoveKeys)
key (Any)
new_key (Any)
key_column (str)
threshold (int)
- property transformation: tmlt.core.transformations.base.Transformation#
Returns the transformation that will be applied to create the new element.
- Return type:
- property key: Any#
Returns the key for the DataFrame to transform.
- Return type:
Any
- property new_key: Any#
Returns the new key for the transformed DataFrame.
- Return type:
Any
- property input_domain: tmlt.core.domains.base.Domain#
Return input domain for the measurement.
- Return type:
- property input_metric: tmlt.core.metrics.Metric#
Distance metric on input domain.
- Return type:
- property output_domain: tmlt.core.domains.base.Domain#
Return input domain for the measurement.
- Return type:
- property output_metric: tmlt.core.metrics.Metric#
Distance metric on input domain.
- Return type:
- __init__(input_domain, input_metric, key, new_key, key_column, threshold)#
Constructor.
- Parameters:
input_domain (
DictDomain
) – Domain of input dictionary of Spark DataFrames.input_metric (
AddRemoveKeys
) – Input metric for the outer dictionary to dictionary transformation.key (
Any
) – The key for the DataFrame to transform.new_key (
Any
) – The key to put the transformed output in. The key must not already be in the input domain.key_column (
str
) – Name of column defining the keys.threshold (
int
) – The maximum number of keys per group after truncation.
- stability_function(d_in)#
Returns the smallest d_out satisfied by the transformation.
See the privacy and stability tutorial (add link?) for more information.
- Parameters:
d_in (tmlt.core.utils.exact_number.ExactNumberInput) – Distance between inputs under input_metric.
- Raises:
NotImplementedError – If not overridden.
- Return type:
- __call__(data)#
Returns a new dictionary augmented with the transformed DataFrame.
- Parameters:
data (Dict[Any, pyspark.sql.DataFrame])
- Return type:
Dict[Any, pyspark.sql.DataFrame]
- stability_relation(d_in, d_out)#
Returns True only if close inputs produce close outputs.
See the privacy and stability tutorial (add link?) for more information.
- Parameters:
d_in (Any) – Distance between inputs under input_metric.
d_out (Any) – Distance between outputs under output_metric.
- Return type:
- __or__(other: Transformation) Transformation #
- __or__(other: tmlt.core.measurements.base.Measurement) tmlt.core.measurements.base.Measurement
Return this transformation chained with another component.
- class LimitRowsPerKeyPerGroupValue(input_domain, input_metric, key, new_key, key_column, threshold)#
Bases:
TransformValue
Applies a
LimitRowsPerKeyPerGroup
to the specified key.See
TransformValue
andLimitRowsPerKeyPerGroup
for more information.- Parameters:
input_domain (tmlt.core.domains.collections.DictDomain)
input_metric (tmlt.core.metrics.AddRemoveKeys)
key (Any)
new_key (Any)
key_column (str)
threshold (int)
- property transformation: tmlt.core.transformations.base.Transformation#
Returns the transformation that will be applied to create the new element.
- Return type:
- property key: Any#
Returns the key for the DataFrame to transform.
- Return type:
Any
- property new_key: Any#
Returns the new key for the transformed DataFrame.
- Return type:
Any
- property input_domain: tmlt.core.domains.base.Domain#
Return input domain for the measurement.
- Return type:
- property input_metric: tmlt.core.metrics.Metric#
Distance metric on input domain.
- Return type:
- property output_domain: tmlt.core.domains.base.Domain#
Return input domain for the measurement.
- Return type:
- property output_metric: tmlt.core.metrics.Metric#
Distance metric on input domain.
- Return type:
- __init__(input_domain, input_metric, key, new_key, key_column, threshold)#
Constructor.
- Parameters:
input_domain (
DictDomain
) – Domain of input dictionary of Spark DataFrames.input_metric (
AddRemoveKeys
) – Input metric for the outer dictionary to dictionary transformation.key (
Any
) – The key for the DataFrame to transform.new_key (
Any
) – The key to put the transformed output in. The key must not already be in the input domain.key_column (
str
) – Name of column defining the keys.threshold (
int
) – The maximum number of rows each unique (key, grouping column value) pair may appear in after truncation.
- stability_function(d_in)#
Returns the smallest d_out satisfied by the transformation.
See the privacy and stability tutorial (add link?) for more information.
- Parameters:
d_in (tmlt.core.utils.exact_number.ExactNumberInput) – Distance between inputs under input_metric.
- Raises:
NotImplementedError – If not overridden.
- Return type:
- __call__(data)#
Returns a new dictionary augmented with the transformed DataFrame.
- Parameters:
data (Dict[Any, pyspark.sql.DataFrame])
- Return type:
Dict[Any, pyspark.sql.DataFrame]
- stability_relation(d_in, d_out)#
Returns True only if close inputs produce close outputs.
See the privacy and stability tutorial (add link?) for more information.
- Parameters:
d_in (Any) – Distance between inputs under input_metric.
d_out (Any) – Distance between outputs under output_metric.
- Return type:
- __or__(other: Transformation) Transformation #
- __or__(other: tmlt.core.measurements.base.Measurement) tmlt.core.measurements.base.Measurement
Return this transformation chained with another component.
- class FilterValue(input_domain, input_metric, key, new_key, filter_expr)#
Bases:
TransformValue
Applies a
Filter
to create a new element from specified value.See
TransformValue
, andFilter
for more information.- Parameters:
input_domain (tmlt.core.domains.collections.DictDomain)
input_metric (tmlt.core.metrics.AddRemoveKeys)
key (Any)
new_key (Any)
filter_expr (str)
- property transformation: tmlt.core.transformations.base.Transformation#
Returns the transformation that will be applied to create the new element.
- Return type:
- property key: Any#
Returns the key for the DataFrame to transform.
- Return type:
Any
- property new_key: Any#
Returns the new key for the transformed DataFrame.
- Return type:
Any
- property input_domain: tmlt.core.domains.base.Domain#
Return input domain for the measurement.
- Return type:
- property input_metric: tmlt.core.metrics.Metric#
Distance metric on input domain.
- Return type:
- property output_domain: tmlt.core.domains.base.Domain#
Return input domain for the measurement.
- Return type:
- property output_metric: tmlt.core.metrics.Metric#
Distance metric on input domain.
- Return type:
- __init__(input_domain, input_metric, key, new_key, filter_expr)#
Constructor.
- Parameters:
input_domain (
DictDomain
) – The Domain of the input dictionary of Spark DataFrames.input_metric (
AddRemoveKeys
) – The input metric for the outer dictionary to dictionary transformation.key (
Any
) – The key for the DataFrame to transform.new_key (
Any
) – The key to put the transformed output in. The key must not already be in the input domain.filter_expr (
str
) – A string of SQL expression specifying the filter to apply to the data. The language is the same as the one used bypyspark.sql.DataFrame.filter()
.
- stability_function(d_in)#
Returns the smallest d_out satisfied by the transformation.
See the privacy and stability tutorial (add link?) for more information.
- Parameters:
d_in (tmlt.core.utils.exact_number.ExactNumberInput) – Distance between inputs under input_metric.
- Raises:
NotImplementedError – If not overridden.
- Return type:
- __call__(data)#
Returns a new dictionary augmented with the transformed DataFrame.
- Parameters:
data (Dict[Any, pyspark.sql.DataFrame])
- Return type:
Dict[Any, pyspark.sql.DataFrame]
- stability_relation(d_in, d_out)#
Returns True only if close inputs produce close outputs.
See the privacy and stability tutorial (add link?) for more information.
- Parameters:
d_in (Any) – Distance between inputs under input_metric.
d_out (Any) – Distance between outputs under output_metric.
- Return type:
- __or__(other: Transformation) Transformation #
- __or__(other: tmlt.core.measurements.base.Measurement) tmlt.core.measurements.base.Measurement
Return this transformation chained with another component.
- class PublicJoinValue(input_domain, input_metric, key, new_key, public_df, public_df_domain=None, join_cols=None, join_on_nulls=False)#
Bases:
TransformValue
Applies a
PublicJoin
to create a new element from specified value.See
TransformValue
, andPublicJoin
for more information.- Parameters:
input_domain (tmlt.core.domains.collections.DictDomain)
input_metric (tmlt.core.metrics.AddRemoveKeys)
key (Any)
new_key (Any)
public_df (pyspark.sql.DataFrame)
public_df_domain (Optional[tmlt.core.domains.spark_domains.SparkDataFrameDomain])
join_cols (Optional[List[str]])
join_on_nulls (bool)
- property transformation: tmlt.core.transformations.base.Transformation#
Returns the transformation that will be applied to create the new element.
- Return type:
- property key: Any#
Returns the key for the DataFrame to transform.
- Return type:
Any
- property new_key: Any#
Returns the new key for the transformed DataFrame.
- Return type:
Any
- property input_domain: tmlt.core.domains.base.Domain#
Return input domain for the measurement.
- Return type:
- property input_metric: tmlt.core.metrics.Metric#
Distance metric on input domain.
- Return type:
- property output_domain: tmlt.core.domains.base.Domain#
Return input domain for the measurement.
- Return type:
- property output_metric: tmlt.core.metrics.Metric#
Distance metric on input domain.
- Return type:
- __init__(input_domain, input_metric, key, new_key, public_df, public_df_domain=None, join_cols=None, join_on_nulls=False)#
Constructor.
- Parameters:
input_domain (
DictDomain
) – The Domain of the input dictionary of Spark DataFrames.input_metric (
AddRemoveKeys
) – The input metric for the outer dictionary to dictionary transformation.key (
Any
) – The key for the DataFrame to transform.new_key (
Any
) – The key to put the transformed output in. The key must not already be in the input domain.public_df (
DataFrame
) – A Spark DataFrame to join with.public_df_domain (
Optional
[SparkDataFrameDomain
]) – Domain of public DataFrame to join with. If this domain indicates that a float column does not allow nans (or infs), all rows inpublic_df
containing a nan (or an inf) in that column will be dropped. If None, domain is inferred from the schema ofpublic_df
and any float column will be marked as allowing inf and nan values.join_cols (
Optional
[List
[str
]]) – Names of columns to join on. If None, a natural join is performed.join_on_nulls (
bool
) – If True, null values on corresponding join columns of the public and private dataframes will be considered to be equal.
- stability_function(d_in)#
Returns the smallest d_out satisfied by the transformation.
See the privacy and stability tutorial (add link?) for more information.
- Parameters:
d_in (tmlt.core.utils.exact_number.ExactNumberInput) – Distance between inputs under input_metric.
- Raises:
NotImplementedError – If not overridden.
- Return type:
- __call__(data)#
Returns a new dictionary augmented with the transformed DataFrame.
- Parameters:
data (Dict[Any, pyspark.sql.DataFrame])
- Return type:
Dict[Any, pyspark.sql.DataFrame]
- stability_relation(d_in, d_out)#
Returns True only if close inputs produce close outputs.
See the privacy and stability tutorial (add link?) for more information.
- Parameters:
d_in (Any) – Distance between inputs under input_metric.
d_out (Any) – Distance between outputs under output_metric.
- Return type:
- __or__(other: Transformation) Transformation #
- __or__(other: tmlt.core.measurements.base.Measurement) tmlt.core.measurements.base.Measurement
Return this transformation chained with another component.
- class FlatMapByKeyValue(input_domain, input_metric, key, new_key, row_transformer)#
Bases:
TransformValue
Applies a
FlatMapByKey
to create a new element from specified value.See
TransformValue
andFlatMapByKey
for more information.- Parameters:
input_domain (tmlt.core.domains.collections.DictDomain)
input_metric (tmlt.core.metrics.AddRemoveKeys)
key (Any)
new_key (Any)
row_transformer (tmlt.core.transformations.spark_transformations.map.RowsToRowsTransformation)
- property transformation: tmlt.core.transformations.base.Transformation#
Returns the transformation that will be applied to create the new element.
- Return type:
- property key: Any#
Returns the key for the DataFrame to transform.
- Return type:
Any
- property new_key: Any#
Returns the new key for the transformed DataFrame.
- Return type:
Any
- property input_domain: tmlt.core.domains.base.Domain#
Return input domain for the measurement.
- Return type:
- property input_metric: tmlt.core.metrics.Metric#
Distance metric on input domain.
- Return type:
- property output_domain: tmlt.core.domains.base.Domain#
Return input domain for the measurement.
- Return type:
- property output_metric: tmlt.core.metrics.Metric#
Distance metric on input domain.
- Return type:
- __init__(input_domain, input_metric, key, new_key, row_transformer)#
Constructor.
- Parameters:
input_domain (
DictDomain
) – The Domain of the input dictionary of Spark DataFrames.input_metric (
AddRemoveKeys
) – The input metric for the outer dictionary to dictionary transformation.key (
Any
) – The key for the DataFrame to transform.new_key (
Any
) – The key to put the transformed output in. The key must not already be in the input domain.row_transformer (
RowsToRowsTransformation
) – Transformation to apply to each group of rows.
- stability_function(d_in)#
Returns the smallest d_out satisfied by the transformation.
See the privacy and stability tutorial (add link?) for more information.
- Parameters:
d_in (tmlt.core.utils.exact_number.ExactNumberInput) – Distance between inputs under input_metric.
- Raises:
NotImplementedError – If not overridden.
- Return type:
- __call__(data)#
Returns a new dictionary augmented with the transformed DataFrame.
- Parameters:
data (Dict[Any, pyspark.sql.DataFrame])
- Return type:
Dict[Any, pyspark.sql.DataFrame]
- stability_relation(d_in, d_out)#
Returns True only if close inputs produce close outputs.
See the privacy and stability tutorial (add link?) for more information.
- Parameters:
d_in (Any) – Distance between inputs under input_metric.
d_out (Any) – Distance between outputs under output_metric.
- Return type:
- __or__(other: Transformation) Transformation #
- __or__(other: tmlt.core.measurements.base.Measurement) tmlt.core.measurements.base.Measurement
Return this transformation chained with another component.
- class FlatMapValue(input_domain, input_metric, key, new_key, row_transformer, max_num_rows)#
Bases:
TransformValue
Applies a
FlatMap
to create a new element from specified value.See
TransformValue
, andFlatMap
for more information.- Parameters:
input_domain (tmlt.core.domains.collections.DictDomain)
input_metric (tmlt.core.metrics.AddRemoveKeys)
key (Any)
new_key (Any)
row_transformer (tmlt.core.transformations.spark_transformations.map.RowToRowsTransformation)
max_num_rows (Optional[int])
- property transformation: tmlt.core.transformations.base.Transformation#
Returns the transformation that will be applied to create the new element.
- Return type:
- property key: Any#
Returns the key for the DataFrame to transform.
- Return type:
Any
- property new_key: Any#
Returns the new key for the transformed DataFrame.
- Return type:
Any
- property input_domain: tmlt.core.domains.base.Domain#
Return input domain for the measurement.
- Return type:
- property input_metric: tmlt.core.metrics.Metric#
Distance metric on input domain.
- Return type:
- property output_domain: tmlt.core.domains.base.Domain#
Return input domain for the measurement.
- Return type:
- property output_metric: tmlt.core.metrics.Metric#
Distance metric on input domain.
- Return type:
- __init__(input_domain, input_metric, key, new_key, row_transformer, max_num_rows)#
Constructor.
- Parameters:
input_domain (
DictDomain
) – The Domain of the input dictionary of Spark DataFrames.input_metric (
AddRemoveKeys
) – The input metric for the outer dictionary to dictionary transformation.key (
Any
) – The key for the DataFrame to transform.new_key (
Any
) – The key to put the transformed output in. The key must not already be in the input domain.row_transformer (
RowToRowsTransformation
) – Transformation to apply to each row.max_num_rows (
Optional
[int
]) – The maximum number of rows to allow fromrow_transformer
. If more rows are output, the additional rows are suppressed. If this value is None, the transformation will not impose a limit on the number of rows.
- stability_function(d_in)#
Returns the smallest d_out satisfied by the transformation.
See the privacy and stability tutorial (add link?) for more information.
- Parameters:
d_in (tmlt.core.utils.exact_number.ExactNumberInput) – Distance between inputs under input_metric.
- Raises:
NotImplementedError – If not overridden.
- Return type:
- __call__(data)#
Returns a new dictionary augmented with the transformed DataFrame.
- Parameters:
data (Dict[Any, pyspark.sql.DataFrame])
- Return type:
Dict[Any, pyspark.sql.DataFrame]
- stability_relation(d_in, d_out)#
Returns True only if close inputs produce close outputs.
See the privacy and stability tutorial (add link?) for more information.
- Parameters:
d_in (Any) – Distance between inputs under input_metric.
d_out (Any) – Distance between outputs under output_metric.
- Return type:
- __or__(other: Transformation) Transformation #
- __or__(other: tmlt.core.measurements.base.Measurement) tmlt.core.measurements.base.Measurement
Return this transformation chained with another component.
- class MapValue(input_domain, input_metric, key, new_key, row_transformer)#
Bases:
TransformValue
Applies a
Map
to create a new element from specified value.See
TransformValue
, andMap
for more information.- Parameters:
input_domain (tmlt.core.domains.collections.DictDomain)
input_metric (tmlt.core.metrics.AddRemoveKeys)
key (Any)
new_key (Any)
row_transformer (tmlt.core.transformations.spark_transformations.map.RowToRowTransformation)
- property transformation: tmlt.core.transformations.base.Transformation#
Returns the transformation that will be applied to create the new element.
- Return type:
- property key: Any#
Returns the key for the DataFrame to transform.
- Return type:
Any
- property new_key: Any#
Returns the new key for the transformed DataFrame.
- Return type:
Any
- property input_domain: tmlt.core.domains.base.Domain#
Return input domain for the measurement.
- Return type:
- property input_metric: tmlt.core.metrics.Metric#
Distance metric on input domain.
- Return type:
- property output_domain: tmlt.core.domains.base.Domain#
Return input domain for the measurement.
- Return type:
- property output_metric: tmlt.core.metrics.Metric#
Distance metric on input domain.
- Return type:
- __init__(input_domain, input_metric, key, new_key, row_transformer)#
Constructor.
- Parameters:
input_domain (
DictDomain
) – The Domain of the input dictionary of Spark DataFrames.input_metric (
AddRemoveKeys
) – The input metric for the outer dictionary to dictionary transformation.key (
Any
) – The key for the DataFrame to transform.new_key (
Any
) – The key to put the transformed output in. The key must not already be in the input domain.row_transformer (
RowToRowTransformation
) – Transformation to apply to each row.
- stability_function(d_in)#
Returns the smallest d_out satisfied by the transformation.
See the privacy and stability tutorial (add link?) for more information.
- Parameters:
d_in (tmlt.core.utils.exact_number.ExactNumberInput) – Distance between inputs under input_metric.
- Raises:
NotImplementedError – If not overridden.
- Return type:
- __call__(data)#
Returns a new dictionary augmented with the transformed DataFrame.
- Parameters:
data (Dict[Any, pyspark.sql.DataFrame])
- Return type:
Dict[Any, pyspark.sql.DataFrame]
- stability_relation(d_in, d_out)#
Returns True only if close inputs produce close outputs.
See the privacy and stability tutorial (add link?) for more information.
- Parameters:
d_in (Any) – Distance between inputs under input_metric.
d_out (Any) – Distance between outputs under output_metric.
- Return type:
- __or__(other: Transformation) Transformation #
- __or__(other: tmlt.core.measurements.base.Measurement) tmlt.core.measurements.base.Measurement
Return this transformation chained with another component.
- class DropInfsValue(input_domain, input_metric, key, new_key, columns)#
Bases:
TransformValue
Applies a
DropInfs
to create a new element from specified value.See
TransformValue
, andDropInfs
for more information.- Parameters:
input_domain (tmlt.core.domains.collections.DictDomain)
input_metric (tmlt.core.metrics.AddRemoveKeys)
key (Any)
new_key (Any)
columns (List[str])
- property transformation: tmlt.core.transformations.base.Transformation#
Returns the transformation that will be applied to create the new element.
- Return type:
- property key: Any#
Returns the key for the DataFrame to transform.
- Return type:
Any
- property new_key: Any#
Returns the new key for the transformed DataFrame.
- Return type:
Any
- property input_domain: tmlt.core.domains.base.Domain#
Return input domain for the measurement.
- Return type:
- property input_metric: tmlt.core.metrics.Metric#
Distance metric on input domain.
- Return type:
- property output_domain: tmlt.core.domains.base.Domain#
Return input domain for the measurement.
- Return type:
- property output_metric: tmlt.core.metrics.Metric#
Distance metric on input domain.
- Return type:
- __init__(input_domain, input_metric, key, new_key, columns)#
Constructor.
- Parameters:
input_domain (
DictDomain
) – The Domain of the input dictionary of Spark DataFrames.input_metric (
AddRemoveKeys
) – The input metric for the outer dictionary to dictionary transformation.key (
Any
) – The key for the DataFrame to transform.new_key (
Any
) – The key to put the transformed output in. The key must not already be in the input domain.
- stability_function(d_in)#
Returns the smallest d_out satisfied by the transformation.
See the privacy and stability tutorial (add link?) for more information.
- Parameters:
d_in (tmlt.core.utils.exact_number.ExactNumberInput) – Distance between inputs under input_metric.
- Raises:
NotImplementedError – If not overridden.
- Return type:
- __call__(data)#
Returns a new dictionary augmented with the transformed DataFrame.
- Parameters:
data (Dict[Any, pyspark.sql.DataFrame])
- Return type:
Dict[Any, pyspark.sql.DataFrame]
- stability_relation(d_in, d_out)#
Returns True only if close inputs produce close outputs.
See the privacy and stability tutorial (add link?) for more information.
- Parameters:
d_in (Any) – Distance between inputs under input_metric.
d_out (Any) – Distance between outputs under output_metric.
- Return type:
- __or__(other: Transformation) Transformation #
- __or__(other: tmlt.core.measurements.base.Measurement) tmlt.core.measurements.base.Measurement
Return this transformation chained with another component.
- class DropNaNsValue(input_domain, input_metric, key, new_key, columns)#
Bases:
TransformValue
Applies a
DropNaNs
to create a new element from specified value.See
TransformValue
, andDropNaNs
for more information.- Parameters:
input_domain (tmlt.core.domains.collections.DictDomain)
input_metric (tmlt.core.metrics.AddRemoveKeys)
key (Any)
new_key (Any)
columns (List[str])
- property transformation: tmlt.core.transformations.base.Transformation#
Returns the transformation that will be applied to create the new element.
- Return type:
- property key: Any#
Returns the key for the DataFrame to transform.
- Return type:
Any
- property new_key: Any#
Returns the new key for the transformed DataFrame.
- Return type:
Any
- property input_domain: tmlt.core.domains.base.Domain#
Return input domain for the measurement.
- Return type:
- property input_metric: tmlt.core.metrics.Metric#
Distance metric on input domain.
- Return type:
- property output_domain: tmlt.core.domains.base.Domain#
Return input domain for the measurement.
- Return type:
- property output_metric: tmlt.core.metrics.Metric#
Distance metric on input domain.
- Return type:
- __init__(input_domain, input_metric, key, new_key, columns)#
Constructor.
- Parameters:
input_domain (
DictDomain
) – The Domain of the input dictionary of Spark DataFrames.input_metric (
AddRemoveKeys
) – The input metric for the outer dictionary to dictionary transformation.key (
Any
) – The key for the DataFrame to transform.new_key (
Any
) – The key to put the transformed output in. The key must not already be in the input domain.
- stability_function(d_in)#
Returns the smallest d_out satisfied by the transformation.
See the privacy and stability tutorial (add link?) for more information.
- Parameters:
d_in (tmlt.core.utils.exact_number.ExactNumberInput) – Distance between inputs under input_metric.
- Raises:
NotImplementedError – If not overridden.
- Return type:
- __call__(data)#
Returns a new dictionary augmented with the transformed DataFrame.
- Parameters:
data (Dict[Any, pyspark.sql.DataFrame])
- Return type:
Dict[Any, pyspark.sql.DataFrame]
- stability_relation(d_in, d_out)#
Returns True only if close inputs produce close outputs.
See the privacy and stability tutorial (add link?) for more information.
- Parameters:
d_in (Any) – Distance between inputs under input_metric.
d_out (Any) – Distance between outputs under output_metric.
- Return type:
- __or__(other: Transformation) Transformation #
- __or__(other: tmlt.core.measurements.base.Measurement) tmlt.core.measurements.base.Measurement
Return this transformation chained with another component.
- class DropNullsValue(input_domain, input_metric, key, new_key, columns)#
Bases:
TransformValue
Applies a
DropNulls
to create a new element from specified value.See
TransformValue
, andDropNulls
for more information.- Parameters:
input_domain (tmlt.core.domains.collections.DictDomain)
input_metric (tmlt.core.metrics.AddRemoveKeys)
key (Any)
new_key (Any)
columns (List[str])
- property transformation: tmlt.core.transformations.base.Transformation#
Returns the transformation that will be applied to create the new element.
- Return type:
- property key: Any#
Returns the key for the DataFrame to transform.
- Return type:
Any
- property new_key: Any#
Returns the new key for the transformed DataFrame.
- Return type:
Any
- property input_domain: tmlt.core.domains.base.Domain#
Return input domain for the measurement.
- Return type:
- property input_metric: tmlt.core.metrics.Metric#
Distance metric on input domain.
- Return type:
- property output_domain: tmlt.core.domains.base.Domain#
Return input domain for the measurement.
- Return type:
- property output_metric: tmlt.core.metrics.Metric#
Distance metric on input domain.
- Return type:
- __init__(input_domain, input_metric, key, new_key, columns)#
Constructor.
- Parameters:
input_domain (
DictDomain
) – The Domain of the input dictionary of Spark DataFrames.input_metric (
AddRemoveKeys
) – The input metric for the outer dictionary to dictionary transformation.key (
Any
) – The key for the DataFrame to transform.new_key (
Any
) – The key to put the transformed output in. The key must not already be in the input domain.
- stability_function(d_in)#
Returns the smallest d_out satisfied by the transformation.
See the privacy and stability tutorial (add link?) for more information.
- Parameters:
d_in (tmlt.core.utils.exact_number.ExactNumberInput) – Distance between inputs under input_metric.
- Raises:
NotImplementedError – If not overridden.
- Return type:
- __call__(data)#
Returns a new dictionary augmented with the transformed DataFrame.
- Parameters:
data (Dict[Any, pyspark.sql.DataFrame])
- Return type:
Dict[Any, pyspark.sql.DataFrame]
- stability_relation(d_in, d_out)#
Returns True only if close inputs produce close outputs.
See the privacy and stability tutorial (add link?) for more information.
- Parameters:
d_in (Any) – Distance between inputs under input_metric.
d_out (Any) – Distance between outputs under output_metric.
- Return type:
- __or__(other: Transformation) Transformation #
- __or__(other: tmlt.core.measurements.base.Measurement) tmlt.core.measurements.base.Measurement
Return this transformation chained with another component.
- class ReplaceInfsValue(input_domain, input_metric, key, new_key, replace_map)#
Bases:
TransformValue
Applies a
ReplaceInfs
to create a new element from specified value.See
TransformValue
, andReplaceInfs
for more information.- Parameters:
input_domain (tmlt.core.domains.collections.DictDomain)
input_metric (tmlt.core.metrics.AddRemoveKeys)
key (Any)
new_key (Any)
- property transformation: tmlt.core.transformations.base.Transformation#
Returns the transformation that will be applied to create the new element.
- Return type:
- property key: Any#
Returns the key for the DataFrame to transform.
- Return type:
Any
- property new_key: Any#
Returns the new key for the transformed DataFrame.
- Return type:
Any
- property input_domain: tmlt.core.domains.base.Domain#
Return input domain for the measurement.
- Return type:
- property input_metric: tmlt.core.metrics.Metric#
Distance metric on input domain.
- Return type:
- property output_domain: tmlt.core.domains.base.Domain#
Return input domain for the measurement.
- Return type:
- property output_metric: tmlt.core.metrics.Metric#
Distance metric on input domain.
- Return type:
- __init__(input_domain, input_metric, key, new_key, replace_map)#
Constructor.
- Parameters:
input_domain (
DictDomain
) – The Domain of the input dictionary of Spark DataFrames.input_metric (
AddRemoveKeys
) – The input metric for the outer dictionary to dictionary transformation.key (
Any
) – The key for the DataFrame to transform.new_key (
Any
) – The key to put the transformed output in. The key must not already be in the input domain.replace_map (
Dict
[str
,Tuple
[float
,float
]]) – Dictionary mapping column names to a tuple. The first value in the tuple will be used to replace -inf in that column, and the second value in the tuple will be used to replace +inf in that column.
- stability_function(d_in)#
Returns the smallest d_out satisfied by the transformation.
See the privacy and stability tutorial (add link?) for more information.
- Parameters:
d_in (tmlt.core.utils.exact_number.ExactNumberInput) – Distance between inputs under input_metric.
- Raises:
NotImplementedError – If not overridden.
- Return type:
- __call__(data)#
Returns a new dictionary augmented with the transformed DataFrame.
- Parameters:
data (Dict[Any, pyspark.sql.DataFrame])
- Return type:
Dict[Any, pyspark.sql.DataFrame]
- stability_relation(d_in, d_out)#
Returns True only if close inputs produce close outputs.
See the privacy and stability tutorial (add link?) for more information.
- Parameters:
d_in (Any) – Distance between inputs under input_metric.
d_out (Any) – Distance between outputs under output_metric.
- Return type:
- __or__(other: Transformation) Transformation #
- __or__(other: tmlt.core.measurements.base.Measurement) tmlt.core.measurements.base.Measurement
Return this transformation chained with another component.
- class ReplaceNaNsValue(input_domain, input_metric, key, new_key, replace_map)#
Bases:
TransformValue
Applies a
ReplaceNaNs
to create a new element from specified value.See
TransformValue
, andReplaceNaNs
for more information.- Parameters:
input_domain (tmlt.core.domains.collections.DictDomain)
input_metric (tmlt.core.metrics.AddRemoveKeys)
key (Any)
new_key (Any)
replace_map (Dict[str, Any])
- property transformation: tmlt.core.transformations.base.Transformation#
Returns the transformation that will be applied to create the new element.
- Return type:
- property key: Any#
Returns the key for the DataFrame to transform.
- Return type:
Any
- property new_key: Any#
Returns the new key for the transformed DataFrame.
- Return type:
Any
- property input_domain: tmlt.core.domains.base.Domain#
Return input domain for the measurement.
- Return type:
- property input_metric: tmlt.core.metrics.Metric#
Distance metric on input domain.
- Return type:
- property output_domain: tmlt.core.domains.base.Domain#
Return input domain for the measurement.
- Return type:
- property output_metric: tmlt.core.metrics.Metric#
Distance metric on input domain.
- Return type:
- __init__(input_domain, input_metric, key, new_key, replace_map)#
Constructor.
- Parameters:
input_domain (
DictDomain
) – The Domain of the input dictionary of Spark DataFrames.input_metric (
AddRemoveKeys
) – The input metric for the outer dictionary to dictionary transformation.key (
Any
) – The key for the DataFrame to transform.new_key (
Any
) – The key to put the transformed output in. The key must not already be in the input domain.replace_map (
Dict
[str
,Any
]) – Dictionary mapping column names to value to be used for replacing NaNs in that column.
- stability_function(d_in)#
Returns the smallest d_out satisfied by the transformation.
See the privacy and stability tutorial (add link?) for more information.
- Parameters:
d_in (tmlt.core.utils.exact_number.ExactNumberInput) – Distance between inputs under input_metric.
- Raises:
NotImplementedError – If not overridden.
- Return type:
- __call__(data)#
Returns a new dictionary augmented with the transformed DataFrame.
- Parameters:
data (Dict[Any, pyspark.sql.DataFrame])
- Return type:
Dict[Any, pyspark.sql.DataFrame]
- stability_relation(d_in, d_out)#
Returns True only if close inputs produce close outputs.
See the privacy and stability tutorial (add link?) for more information.
- Parameters:
d_in (Any) – Distance between inputs under input_metric.
d_out (Any) – Distance between outputs under output_metric.
- Return type:
- __or__(other: Transformation) Transformation #
- __or__(other: tmlt.core.measurements.base.Measurement) tmlt.core.measurements.base.Measurement
Return this transformation chained with another component.
- class ReplaceNullsValue(input_domain, input_metric, key, new_key, replace_map)#
Bases:
TransformValue
Applies a
ReplaceNulls
to create a new element from specified value.See
TransformValue
, andReplaceNulls
for more information.- Parameters:
input_domain (tmlt.core.domains.collections.DictDomain)
input_metric (tmlt.core.metrics.AddRemoveKeys)
key (Any)
new_key (Any)
replace_map (Dict[str, Any])
- property transformation: tmlt.core.transformations.base.Transformation#
Returns the transformation that will be applied to create the new element.
- Return type:
- property key: Any#
Returns the key for the DataFrame to transform.
- Return type:
Any
- property new_key: Any#
Returns the new key for the transformed DataFrame.
- Return type:
Any
- property input_domain: tmlt.core.domains.base.Domain#
Return input domain for the measurement.
- Return type:
- property input_metric: tmlt.core.metrics.Metric#
Distance metric on input domain.
- Return type:
- property output_domain: tmlt.core.domains.base.Domain#
Return input domain for the measurement.
- Return type:
- property output_metric: tmlt.core.metrics.Metric#
Distance metric on input domain.
- Return type:
- __init__(input_domain, input_metric, key, new_key, replace_map)#
Constructor.
- Parameters:
input_domain (
DictDomain
) – The Domain of the input dictionary of Spark DataFrames.input_metric (
AddRemoveKeys
) – The input metric for the outer dictionary to dictionary transformation.key (
Any
) – The key for the DataFrame to transform.new_key (
Any
) – The key to put the transformed output in. The key must not already be in the input domain.replace_map (
Dict
[str
,Any
]) – Dictionary mapping column names to value to be used for replacing nulls in that column.
- stability_function(d_in)#
Returns the smallest d_out satisfied by the transformation.
See the privacy and stability tutorial (add link?) for more information.
- Parameters:
d_in (tmlt.core.utils.exact_number.ExactNumberInput) – Distance between inputs under input_metric.
- Raises:
NotImplementedError – If not overridden.
- Return type:
- __call__(data)#
Returns a new dictionary augmented with the transformed DataFrame.
- Parameters:
data (Dict[Any, pyspark.sql.DataFrame])
- Return type:
Dict[Any, pyspark.sql.DataFrame]
- stability_relation(d_in, d_out)#
Returns True only if close inputs produce close outputs.
See the privacy and stability tutorial (add link?) for more information.
- Parameters:
d_in (Any) – Distance between inputs under input_metric.
d_out (Any) – Distance between outputs under output_metric.
- Return type:
- __or__(other: Transformation) Transformation #
- __or__(other: tmlt.core.measurements.base.Measurement) tmlt.core.measurements.base.Measurement
Return this transformation chained with another component.
- class PersistValue(input_domain, input_metric, key, new_key)#
Bases:
TransformValue
Applies a
Persist
to create a new element from specified value.See
TransformValue
, andPersist
for more information.- Parameters:
input_domain (tmlt.core.domains.collections.DictDomain)
input_metric (tmlt.core.metrics.AddRemoveKeys)
key (Any)
new_key (Any)
- property transformation: tmlt.core.transformations.base.Transformation#
Returns the transformation that will be applied to create the new element.
- Return type:
- property key: Any#
Returns the key for the DataFrame to transform.
- Return type:
Any
- property new_key: Any#
Returns the new key for the transformed DataFrame.
- Return type:
Any
- property input_domain: tmlt.core.domains.base.Domain#
Return input domain for the measurement.
- Return type:
- property input_metric: tmlt.core.metrics.Metric#
Distance metric on input domain.
- Return type:
- property output_domain: tmlt.core.domains.base.Domain#
Return input domain for the measurement.
- Return type:
- property output_metric: tmlt.core.metrics.Metric#
Distance metric on input domain.
- Return type:
- __init__(input_domain, input_metric, key, new_key)#
Constructor.
- Parameters:
input_domain (
DictDomain
) – The Domain of the input dictionary of Spark DataFrames.input_metric (
AddRemoveKeys
) – The input metric for the outer dictionary to dictionary transformation.key (
Any
) – The key for the DataFrame to transform.new_key (
Any
) – The key to put the transformed output in. The key must not already be in the input domain.
- stability_function(d_in)#
Returns the smallest d_out satisfied by the transformation.
See the privacy and stability tutorial (add link?) for more information.
- Parameters:
d_in (tmlt.core.utils.exact_number.ExactNumberInput) – Distance between inputs under input_metric.
- Raises:
NotImplementedError – If not overridden.
- Return type:
- __call__(data)#
Returns a new dictionary augmented with the transformed DataFrame.
- Parameters:
data (Dict[Any, pyspark.sql.DataFrame])
- Return type:
Dict[Any, pyspark.sql.DataFrame]
- stability_relation(d_in, d_out)#
Returns True only if close inputs produce close outputs.
See the privacy and stability tutorial (add link?) for more information.
- Parameters:
d_in (Any) – Distance between inputs under input_metric.
d_out (Any) – Distance between outputs under output_metric.
- Return type:
- __or__(other: Transformation) Transformation #
- __or__(other: tmlt.core.measurements.base.Measurement) tmlt.core.measurements.base.Measurement
Return this transformation chained with another component.
- class UnpersistValue(input_domain, input_metric, key, new_key)#
Bases:
TransformValue
Applies a
Unpersist
to create a new element from specified value.See
TransformValue
, andUnpersist
for more information.- Parameters:
input_domain (tmlt.core.domains.collections.DictDomain)
input_metric (tmlt.core.metrics.AddRemoveKeys)
key (Any)
new_key (Any)
- property transformation: tmlt.core.transformations.base.Transformation#
Returns the transformation that will be applied to create the new element.
- Return type:
- property key: Any#
Returns the key for the DataFrame to transform.
- Return type:
Any
- property new_key: Any#
Returns the new key for the transformed DataFrame.
- Return type:
Any
- property input_domain: tmlt.core.domains.base.Domain#
Return input domain for the measurement.
- Return type:
- property input_metric: tmlt.core.metrics.Metric#
Distance metric on input domain.
- Return type:
- property output_domain: tmlt.core.domains.base.Domain#
Return input domain for the measurement.
- Return type:
- property output_metric: tmlt.core.metrics.Metric#
Distance metric on input domain.
- Return type:
- __init__(input_domain, input_metric, key, new_key)#
Constructor.
- Parameters:
input_domain (
DictDomain
) – The Domain of the input dictionary of Spark DataFrames.input_metric (
AddRemoveKeys
) – The input metric for the outer dictionary to dictionary transformation.key (
Any
) – The key for the DataFrame to transform.new_key (
Any
) – The key to put the transformed output in. The key must not already be in the input domain.
- stability_function(d_in)#
Returns the smallest d_out satisfied by the transformation.
See the privacy and stability tutorial (add link?) for more information.
- Parameters:
d_in (tmlt.core.utils.exact_number.ExactNumberInput) – Distance between inputs under input_metric.
- Raises:
NotImplementedError – If not overridden.
- Return type:
- __call__(data)#
Returns a new dictionary augmented with the transformed DataFrame.
- Parameters:
data (Dict[Any, pyspark.sql.DataFrame])
- Return type:
Dict[Any, pyspark.sql.DataFrame]
- stability_relation(d_in, d_out)#
Returns True only if close inputs produce close outputs.
See the privacy and stability tutorial (add link?) for more information.
- Parameters:
d_in (Any) – Distance between inputs under input_metric.
d_out (Any) – Distance between outputs under output_metric.
- Return type:
- __or__(other: Transformation) Transformation #
- __or__(other: tmlt.core.measurements.base.Measurement) tmlt.core.measurements.base.Measurement
Return this transformation chained with another component.
- class SparkActionValue(input_domain, input_metric, key, new_key)#
Bases:
TransformValue
Applies a
SparkAction
to create a new element from specified value.See
TransformValue
, andSparkAction
for more information.- Parameters:
input_domain (tmlt.core.domains.collections.DictDomain)
input_metric (tmlt.core.metrics.AddRemoveKeys)
key (Any)
new_key (Any)
- property transformation: tmlt.core.transformations.base.Transformation#
Returns the transformation that will be applied to create the new element.
- Return type:
- property key: Any#
Returns the key for the DataFrame to transform.
- Return type:
Any
- property new_key: Any#
Returns the new key for the transformed DataFrame.
- Return type:
Any
- property input_domain: tmlt.core.domains.base.Domain#
Return input domain for the measurement.
- Return type:
- property input_metric: tmlt.core.metrics.Metric#
Distance metric on input domain.
- Return type:
- property output_domain: tmlt.core.domains.base.Domain#
Return input domain for the measurement.
- Return type:
- property output_metric: tmlt.core.metrics.Metric#
Distance metric on input domain.
- Return type:
- __init__(input_domain, input_metric, key, new_key)#
Constructor.
- Parameters:
input_domain (
DictDomain
) – The Domain of the input dictionary of Spark DataFrames.input_metric (
AddRemoveKeys
) – The input metric for the outer dictionary to dictionary transformation.key (
Any
) – The key for the DataFrame to transform.new_key (
Any
) – The key to put the transformed output in. The key must not already be in the input domain.
- stability_function(d_in)#
Returns the smallest d_out satisfied by the transformation.
See the privacy and stability tutorial (add link?) for more information.
- Parameters:
d_in (tmlt.core.utils.exact_number.ExactNumberInput) – Distance between inputs under input_metric.
- Raises:
NotImplementedError – If not overridden.
- Return type:
- __call__(data)#
Returns a new dictionary augmented with the transformed DataFrame.
- Parameters:
data (Dict[Any, pyspark.sql.DataFrame])
- Return type:
Dict[Any, pyspark.sql.DataFrame]
- stability_relation(d_in, d_out)#
Returns True only if close inputs produce close outputs.
See the privacy and stability tutorial (add link?) for more information.
- Parameters:
d_in (Any) – Distance between inputs under input_metric.
d_out (Any) – Distance between outputs under output_metric.
- Return type:
- __or__(other: Transformation) Transformation #
- __or__(other: tmlt.core.measurements.base.Measurement) tmlt.core.measurements.base.Measurement
Return this transformation chained with another component.
- class RenameValue(input_domain, input_metric, key, new_key, rename_mapping)#
Bases:
TransformValue
Applies a
Rename
to create a new element from specified value.See
TransformValue
, andRename
for more information.- Parameters:
input_domain (tmlt.core.domains.collections.DictDomain)
input_metric (tmlt.core.metrics.AddRemoveKeys)
key (Any)
new_key (Any)
- property transformation: tmlt.core.transformations.base.Transformation#
Returns the transformation that will be applied to create the new element.
- Return type:
- property key: Any#
Returns the key for the DataFrame to transform.
- Return type:
Any
- property new_key: Any#
Returns the new key for the transformed DataFrame.
- Return type:
Any
- property input_domain: tmlt.core.domains.base.Domain#
Return input domain for the measurement.
- Return type:
- property input_metric: tmlt.core.metrics.Metric#
Distance metric on input domain.
- Return type:
- property output_domain: tmlt.core.domains.base.Domain#
Return input domain for the measurement.
- Return type:
- property output_metric: tmlt.core.metrics.Metric#
Distance metric on input domain.
- Return type:
- __init__(input_domain, input_metric, key, new_key, rename_mapping)#
Constructor.
- Parameters:
input_domain (
DictDomain
) – The Domain of the input dictionary of Spark DataFrames.input_metric (
AddRemoveKeys
) – The input metric for the outer dictionary to dictionary transformation.key (
Any
) – The key for the DataFrame to transform.new_key (
Any
) – The key to put the transformed output in. The key must not already be in the input domain.rename_mapping (
Dict
[str
,str
]) – Dictionary from existing column names to target column names.
- stability_function(d_in)#
Returns the smallest d_out satisfied by the transformation.
See the privacy and stability tutorial (add link?) for more information.
- Parameters:
d_in (tmlt.core.utils.exact_number.ExactNumberInput) – Distance between inputs under input_metric.
- Raises:
NotImplementedError – If not overridden.
- Return type:
- __call__(data)#
Returns a new dictionary augmented with the transformed DataFrame.
- Parameters:
data (Dict[Any, pyspark.sql.DataFrame])
- Return type:
Dict[Any, pyspark.sql.DataFrame]
- stability_relation(d_in, d_out)#
Returns True only if close inputs produce close outputs.
See the privacy and stability tutorial (add link?) for more information.
- Parameters:
d_in (Any) – Distance between inputs under input_metric.
d_out (Any) – Distance between outputs under output_metric.
- Return type:
- __or__(other: Transformation) Transformation #
- __or__(other: tmlt.core.measurements.base.Measurement) tmlt.core.measurements.base.Measurement
Return this transformation chained with another component.
- class SelectValue(input_domain, input_metric, key, new_key, columns)#
Bases:
TransformValue
Applies a
Select
to create a new element from specified value.See
TransformValue
, andSelect
for more information.- Parameters:
input_domain (tmlt.core.domains.collections.DictDomain)
input_metric (tmlt.core.metrics.AddRemoveKeys)
key (Any)
new_key (Any)
columns (List[str])
- property transformation: tmlt.core.transformations.base.Transformation#
Returns the transformation that will be applied to create the new element.
- Return type:
- property key: Any#
Returns the key for the DataFrame to transform.
- Return type:
Any
- property new_key: Any#
Returns the new key for the transformed DataFrame.
- Return type:
Any
- property input_domain: tmlt.core.domains.base.Domain#
Return input domain for the measurement.
- Return type:
- property input_metric: tmlt.core.metrics.Metric#
Distance metric on input domain.
- Return type:
- property output_domain: tmlt.core.domains.base.Domain#
Return input domain for the measurement.
- Return type:
- property output_metric: tmlt.core.metrics.Metric#
Distance metric on input domain.
- Return type:
- __init__(input_domain, input_metric, key, new_key, columns)#
Constructor.
- Parameters:
input_domain (
DictDomain
) – The Domain of the input dictionary of Spark DataFrames.input_metric (
AddRemoveKeys
) – The input metric for the outer dictionary to dictionary transformation.key (
Any
) – The key for the DataFrame to transform.new_key (
Any
) – The key to put the transformed output in. The key must not already be in the input domain.columns (
List
[str
]) – A list of existing column names to keep.
- stability_function(d_in)#
Returns the smallest d_out satisfied by the transformation.
See the privacy and stability tutorial (add link?) for more information.
- Parameters:
d_in (tmlt.core.utils.exact_number.ExactNumberInput) – Distance between inputs under input_metric.
- Raises:
NotImplementedError – If not overridden.
- Return type:
- __call__(data)#
Returns a new dictionary augmented with the transformed DataFrame.
- Parameters:
data (Dict[Any, pyspark.sql.DataFrame])
- Return type:
Dict[Any, pyspark.sql.DataFrame]
- stability_relation(d_in, d_out)#
Returns True only if close inputs produce close outputs.
See the privacy and stability tutorial (add link?) for more information.
- Parameters:
d_in (Any) – Distance between inputs under input_metric.
d_out (Any) – Distance between outputs under output_metric.
- Return type:
- __or__(other: Transformation) Transformation #
- __or__(other: tmlt.core.measurements.base.Measurement) tmlt.core.measurements.base.Measurement
Return this transformation chained with another component.